




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆內蒙古自治區普通高中數學高一下期末學業質量監測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,,則()A. B. C. D.2.已知角的終邊經過點,則的值是()A. B. C. D.3.下列函數中是偶函數且最小正周期為的是()A. B.C. D.4.函數,若方程恰有三個不同的解,記為,則的取值范圍是()A. B. C. D.5.不等式的解集為,則實數的值為()A. B.C. D.6.函數的最小正周期是()A. B. C. D.7.甲、乙兩位射擊運動員的5次比賽成績(單位:環)如莖葉圖所示,若兩位運動員平均成績相同,則成績較穩定(方差較小)的那位運動員成績的方差為A.2 B.4 C.6 D.88.設是等差數列的前項和,若,則A. B. C. D.9.圓心在(-1,0),半徑為的圓的方程為()A. B.C. D.10.等比數列中,,,則公比()A.1 B.2 C.3 D.4二、填空題:本大題共6小題,每小題5分,共30分。11.若則的最小值是__________.12.空間一點到坐標原點的距離是_______.13.若數據的平均數為,則____________.14.方程在區間上的解為___________.15.如圖是函數f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的一個周期的圖象,則f(1)=__________.16.已知三個事件A,B,C兩兩互斥且,則P(A∪B∪C)=__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在平面直角坐標系中,已知向量,.(1)求證:且;(2)設向量,,且,求實數的值.18.已知點,,動點滿足,記M的軌跡為曲線C.(1)求曲線C的方程;(2)過坐標原點O的直線l交C于P、Q兩點,點P在第一象限,軸,垂足為H.連結QH并延長交C于點R.(i)設O到直線QH的距離為d.求d的取值范圍;(ii)求面積的最大值及此時直線l的方程.19.已知的三個內角,,的對邊分別為,,,函數,且當時,取最大值.(1)若關于的方程,有解,求實數的取值范圍;(2)若,且,求的面積.20.已知數列中,..(1)寫出、、;(2)猜想的表達式,并用數學歸納法證明.21.已知直線l過點(1,3),且在y軸上的截距為1.
(1)求直線l的方程;
(2)若直線l與圓C:(x-a)2+(y+a)2=5相切,求實數a的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】由題意可得,即,則,所以,即,也即,所以,應選答案D.點睛:解答本題的關鍵是借助題設中的條件獲得,進而得到,求得,從而求出使得問題獲解.2、D【解析】
首先計算出,根據三角函數定義可求得正弦值和余弦值,從而得到結果.【詳解】由三角函數定義知:,,則:本題正確選項:【點睛】本題考查任意角三角函數的求解問題,屬于基礎題.3、A【解析】
本題首先可將四個選項都轉化為的形式,然后對四個選項的奇偶性以及周期性依次進行判斷,即可得出結果.【詳解】中,函數,是偶函數,周期為;中,函數是奇函數,周期;中,函數,是非奇非偶函數,周期;中,函數是偶函數,周期.綜上所述,故選A.【點睛】本題考查對三角函數的奇偶性以及周期性的判斷,考查三角恒等變換,偶函數滿足,對于函數,其最小正周期為,考查化歸與轉化思想,是中檔題.4、D【解析】
由方程恰有三個不同的解,作出的圖象,確定,的取值范圍,得到的對稱性,利用數形結合進行求解即可.【詳解】設
作出函數的圖象如圖:由
則當
時
,,
即函數的一條對稱軸為
,要使方程恰有三個不同的解,則
,
此時
,
關于
對稱,則
當
,即
,則
則
的取值范圍是,選D.【點睛】本題主要考查了方程與函數,數學結合是解決本題的關鍵,數學結合也是數學中比較重要的一種思想方法.5、C【解析】
不等式的解集為,為方程的兩根,則根據根與系數關系可得,.故選C.考點:一元二次不等式;根與系數關系.6、C【解析】
根據三角函數的周期公式,進行計算,即可求解.【詳解】由角函數的周期公式,可得函數的周期,又由絕對值的周期減半,即為最小正周期為,故選C.【點睛】本題主要考查了三角函數的周期的計算,其中解答中熟記余弦函數的圖象與性質是解答的關鍵,著重考查了計算與求解能力,屬于基礎題.7、A【解析】
根據平均數相同求出x的值,再根據方差的定義計算即可.【詳解】根據莖葉圖中的數據知,甲、乙二人的平均成績相同,即×(87+89+90+91+93)=×(88+89+90+91+90+x),解得x=1,所以平均數為=90;根據莖葉圖中的數據知甲的成績波動性小,較為穩定(方差較小),所以甲成績的方差為s1=×[(88﹣90)1+(89﹣90)1+(90﹣90)1+(91﹣90)1+(91﹣90)1]=1.故選A.【點睛】莖葉圖的優點是保留了原始數據,便于記錄及表示,能反映數據在各段上的分布情況.莖葉圖不能直接反映總體的分布情況,這就需要通過莖葉圖給出的數據求出數據的數字特征,進一步估計總體情況.8、A【解析】,,選A.9、A【解析】
根據圓心和半徑可直接寫出圓的標準方程.【詳解】圓心為(-1,0),半徑為,則圓的方程為故選:A【點睛】本題考查圓的標準方程的求解,屬于簡單題.10、B【解析】
將與用首項和公比表示出來,解方程組即可.【詳解】因為,且,故:,且,解得:,即,故選:B.【點睛】本題考查求解等比數列的基本量,屬基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據對數相等得到,利用基本不等式求解的最小值得到所求結果.【詳解】則,即由題意知,則,則當且僅當,即時取等號本題正確結果:【點睛】本題考查基本不等式求解和的最小值問題,關鍵是能夠利用對數相等得到的關系,從而構造出符合基本不等式的形式.12、【解析】
直接運用空間兩點間距離公式求解即可.【詳解】由空間兩點距離公式可得:.【點睛】本題考查了空間兩點間距離公式,考查了數學運算能力.13、【解析】
根據求平均數的公式,得到關于的方程,求得.【詳解】由題意得:,解得:,故填:.【點睛】本題考查求一組數據的平均數,考查基本數據處理能力.14、【解析】試題分析:化簡得:,所以,解得或(舍去),又,所以.【考點】二倍角公式及三角函數求值【名師點睛】已知三角函數值求角,基本思路是通過化簡,得到角的某種三角函數值,結合角的范圍求解.本題難度不大,能較好地考查考生的邏輯推理能力、基本計算能力等.15、2【解析】
由三角函數圖象,利用三角函數的性質,求得函數的解析式,即可求解的值,得到答案.【詳解】由三角函數圖象,可得,由,得,于是,又,即,解得,所以,則.【點睛】本題主要考查了由三角函數的部分圖象求解函數的解析式及其應用,其中解答中熟記三角函數的圖象與性質,準確計算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.16、0.9【解析】
先計算,再計算【詳解】故答案為0.9【點睛】本題考查了互斥事件的概率計算,屬于基礎題型.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)根據向量的坐標求出向量模的方法以及向量的數量積即可求解.(2)根據向量垂直,可得數量積等于,進而解方程即可求解.【詳解】(1)證明:,,所以,因為,所以;(2)因為,所以,由(1)得:所以,解得.【點睛】本題考查了向量坐標求向量的模以及向量數量積的坐標表示,屬于基礎題.18、(1);(2)(i)(ii)面積最大值為,直線的方程為.【解析】
(1)根據題意列出方程求解即可(2)聯立直線與圓的方程,得出P、Q、H三點坐標,表示出QH直線方程,采用點到直線距離公式求解;利用圓的幾何關系,表示出三角形的底和高,再結合函數最值問題進行求解【詳解】(1)由及兩點距離公式,有,化簡整理得,.所以曲線C的方程為;(2)(i)設直線l的方程為;將直線l的方程與圓C的方程聯立,消去y,得(,解得因此,,,所以直線QH的方程為.到直線QH的距離,當時.,所以,(ii)過O作于D,則D為QR中點,且由(i)知,,,又由,故的面積,由,有,所以,當且僅當時,等號成立,且此時由(i)有,即.綜上,的面積最大值為的面積最大值為,且當面積最大時直線的方程為.【點睛】直線與圓的綜合類題型常采用點到直線距離公式、圓內構造的直角三角形,將代數問題與幾何問題進行有效結合,可大大降低解題難度.19、(1);(2).【解析】
(1)利用兩角和差的正弦公式整理可得:,再利用已知可得:(),結合已知可得:,求得:時,,問題得解.(2)利用正弦定理可得:,結合可得:,對邊利用余弦定理可得:,結合已知整理得:,再利用三角形面積公式計算得解.【詳解】解:(1).因為在處取得最大值,所以,,即.因為,所以,所以.因為,所以所以,因為關于的方程有解,所以的取值范圍為.(2)因為,,由正弦定理,于是.又,所以.由余弦定理得:,整理得:,即,所以,所以.【點睛】本題主要考查了兩角和、差的正弦公式應用,還考查了三角函數的性質及方程與函數的關系,還考查了正弦定理、余弦定理的應用及三角形面積公式,考查計算能力及轉化能力,屬于中檔題.20、(1),,;(2)猜想,證明見解析.【解析】
(1)利用遞推公式可計算出、、的值;(2)根據數列的前四項可猜想出,然后利用數學歸納法即可證明出猜想成立.【詳解】(1),,則,,;(2)猜想,下面利用數學歸納法證明.假設當時成立,即,那么當時,,這說明當時,猜想也成立.由歸納原理可知,.【點睛】本題考查利用數列遞推公式寫出數列中的項,同時也考查了利用數學歸納法證明數列通項公式,考查計算能力與推理能力,屬于中等題.21、(1)y=2x+1;(2)a=-2或【解析】
(1)求得直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 皮革制品的染色與涂飾工藝考核試卷
- 海水淡化處理用于海島居民生活供水考核試卷
- 海洋油氣資源開發工程安全文化培育規范考核試卷
- 電信服務在智能手表等可穿戴設備的應用考核試卷
- 機床制造中的質量控制成本考核試卷
- 衛生潔具市場促銷活動策劃與零售成效分析考核試卷
- 電子測量誤差分析與處理考核試卷
- 電氣設備在智能電網用能分析與優化中的應用考核試卷
- 2025【授權協議】律師服務合同
- 數控機床行業現狀及前景
- 廣東省歷年中考作文題(2000-2023)
- 古代漢語-形考任務1-3-國開-參考資料
- 工業廢水處理技術作業指導書
- 2025年中國航天日知識競賽考試題庫300題(含答案)
- 體檢中心質量控制指南
- 2024年四年級英語下冊 Unit 6 What's Anne doing第2課時教學實錄 湘少版
- 2025-2030中國三相UPS系統行業市場發展趨勢與前景展望戰略分析研究報告
- 2025年湖南省低空經濟發展集團有限公司招聘11人筆試參考題庫附帶答案詳解
- 醫療商務談判藝術
- 2025年廣東中考試題數學及答案
- 四川2024年12月四川省內江市事業單位公開選調2名工作人員筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
評論
0/150
提交評論