




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣東省惠州一中重點達標名校初中數(shù)學畢業(yè)考試模擬沖刺卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知∠1=∠2,要使△ABD≌△ACD,需從下列條件中增加一個,錯誤的選法是()A.∠ADB=∠ADC B.∠B=∠C C.AB=AC D.DB=DC2.方程x2﹣3x=0的根是()A.x=0 B.x=3 C., D.,3.如圖,半徑為的中,弦,所對的圓心角分別是,,若,,則弦的長等于()A. B. C. D.4.一枚質(zhì)地均勻的骰子,骰子的六個面上分別刻有1到6的點數(shù),投擲這樣的骰子一次,向上一面點數(shù)是偶數(shù)的結(jié)果有()A.1種 B.2種 C.3種 D.6種5.下列各數(shù)是不等式組的解是()A.0 B. C.2 D.36.在平面直角坐標系xOy中,若點P(3,4)在⊙O內(nèi),則⊙O的半徑r的取值范圍是()A.0<r<3 B.r>4 C.0<r<5 D.r>57.如圖,已知AB∥CD,DE⊥AC,垂足為E,∠A=120°,則∠D的度數(shù)為()A.30° B.60° C.50° D.40°8.已知,如圖,AB是⊙O的直徑,點D,C在⊙O上,連接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度數(shù)是()A.75° B.65° C.60° D.50°9.估計的值在()A.0到l之間 B.1到2之間 C.2到3之間 D.3到4之間10.桌面上有A、B兩球,若要將B球射向桌面任意一邊的黑點,則B球一次反彈后擊中A球的概率是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖所示,輪船在處觀測燈塔位于北偏西方向上,輪船從處以每小時海里的速度沿南偏西方向勻速航行,小時后到達碼頭處,此時,觀測燈塔位于北偏西方向上,則燈塔與碼頭的距離是______海里(結(jié)果精確到個位,參考數(shù)據(jù):,,)12.如圖,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,F(xiàn)為DE中點,若點D在直線BC上運動,連接CF,則在點D運動過程中,線段CF的最小值是_____.13.在平面直角坐標系xOy中,點A、B為反比例函數(shù)(x>0)的圖象上兩點,A點的橫坐標與B點的縱坐標均為1,將(x>0)的圖象繞原點O順時針旋轉(zhuǎn)90°,A點的對應點為A′,B點的對應點為B′.此時點B′的坐標是_____.14.如圖,線段AB=10,點P在線段AB上,在AB的同側(cè)分別以AP、BP為邊長作正方形APCD和BPEF,點M、N分別是EF、CD的中點,則MN的最小值是_______.15.如圖,正方形ABCD邊長為3,連接AC,AE平分∠CAD,交BC的延長線于點E,F(xiàn)A⊥AE,交CB延長線于點F,則EF的長為__________.16.在今年的春節(jié)黃金周中,全國零售和餐飲企業(yè)實現(xiàn)銷售額約9260億元,比去年春節(jié)黃金周增長10.2%,將9260億用科學記數(shù)法表示為_____________.三、解答題(共8題,共72分)17.(8分)如圖1,點P是平面直角坐標系中第二象限內(nèi)的一點,過點P作PA⊥y軸于點A,點P繞點A順時針旋轉(zhuǎn)60°得到點P',我們稱點P'是點P的“旋轉(zhuǎn)對應點”.(1)若點P(﹣4,2),則點P的“旋轉(zhuǎn)對應點”P'的坐標為;若點P的“旋轉(zhuǎn)對應點”P'的坐標為(﹣5,16)則點P的坐標為;若點P(a,b),則點P的“旋轉(zhuǎn)對應點”P'的坐標為;(2)如圖2,點Q是線段AP'上的一點(不與A、P'重合),點Q的“旋轉(zhuǎn)對應點”是點Q',連接PP'、QQ',求證:PP'∥QQ';(3)點P與它的“旋轉(zhuǎn)對應點”P'的連線所在的直線經(jīng)過點(,6),求直線PP'與x軸的交點坐標.18.(8分)解分式方程:-1=19.(8分)如圖,在△ABC中,AB=AC,點,在邊上,.求證:.20.(8分)如圖,在平面直角坐標系中,矩形OABC的頂點A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過O,A兩點,且頂點在BC邊上,對稱軸交AC于點D,動點P在拋物線對稱軸上,動點Q在拋物線上.(1)求拋物線的解析式;(2)當PO+PC的值最小時,求點P的坐標;(3)是否存在以A,C,P,Q為頂點的四邊形是平行四邊形?若存在,請直接寫出P,Q的坐標;若不存在,請說明理由.21.(8分)為了鞏固全國文明城市建設成果,突出城市品質(zhì)的提升,近年來,某市積極落實節(jié)能減排政策,推行綠色建筑,據(jù)統(tǒng)計,該市2014年的綠色建筑面積約為950萬平方米,2016年達到了1862萬平方米.若2015年、2016年的綠色建筑面積按相同的增長率逐年遞增,請解答下列問題:求這兩年該市推行綠色建筑面積的年平均增長率;2017年該市計劃推行綠色建筑面積達到2400萬平方米.如果2017年仍保持相同的年平均增長率,請你預測2017年該市能否完成計劃目標.22.(10分)某中學為了提高學生的消防意識,舉行了消防知識競賽,所有參賽學生分別設有一、二、三等獎和紀念獎,獲獎情況已繪制成如圖所示的兩幅不完整的統(tǒng)計圖,根據(jù)圖中所經(jīng)信息解答下列問題:(1)這次知識競賽共有多少名學生?(2)“二等獎”對應的扇形圓心角度數(shù),并將條形統(tǒng)計圖補充完整;(3)小華參加了此次的知識競賽,請你幫他求出獲得“一等獎或二等獎”的概率.23.(12分)如圖,點A,C,B,D在同一條直線上,BE∥DF,∠A=∠F,AB=FD,求證:AE=FC.24.如圖,在平面直角坐標系xOy中,直線y=x+b與雙曲線y=相交于A,B兩點,已知A(2,5).求:b和k的值;△OAB的面積.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
由全等三角形的判定方法ASA證出△ABD≌△ACD,得出A正確;由全等三角形的判定方法AAS證出△ABD≌△ACD,得出B正確;由全等三角形的判定方法SAS證出△ABD≌△ACD,得出C正確.由全等三角形的判定方法得出D不正確;【詳解】A正確;理由:在△ABD和△ACD中,∵∠1=∠2,AD=AD,∠ADB=∠ADC,∴△ABD≌△ACD(ASA);B正確;理由:在△ABD和△ACD中,∵∠1=∠2,∠B=∠C,AD=AD∴△ABD≌△ACD(AAS);C正確;理由:在△ABD和△ACD中,∵AB=AC,∠1=∠2,AD=AD,∴△ABD≌△ACD(SAS);D不正確,由這些條件不能判定三角形全等;故選:D.【點睛】本題考查了全等三角形的判定方法;三角形全等的判定是中考的熱點,熟練掌握全等三角形的判定方法是解決問題的關(guān)鍵.2、D【解析】
先將方程左邊提公因式x,解方程即可得答案.【詳解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故選:D.【點睛】本題考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接開平方法、公式法、因式分解法等,熟練掌握并靈活運用適當?shù)姆椒ㄊ墙忸}關(guān)鍵.3、A【解析】作AH⊥BC于H,作直徑CF,連結(jié)BF,先利用等角的補角相等得到∠DAE=∠BAF,然后再根據(jù)同圓中,相等的圓心角所對的弦相等得到DE=BF=6,由AH⊥BC,根據(jù)垂徑定理得CH=BH,易得AH為△CBF的中位線,然后根據(jù)三角形中位線性質(zhì)得到AH=BF=1,從而求解.解:作AH⊥BC于H,作直徑CF,連結(jié)BF,如圖,∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH為△CBF的中位線,∴AH=BF=1.∴,∴BC=2BH=2.故選A.“點睛”本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.也考查了垂徑定理和三角形中位線性質(zhì).4、C【解析】試題分析:一枚質(zhì)地均勻的正方體骰子的六個面上分別刻有1到6的點數(shù),擲一次這枚骰子,向上的一面的點數(shù)為偶數(shù)的有3種情況,故選C.考點:正方體相對兩個面上的文字.5、D【解析】
求出不等式組的解集,判斷即可.【詳解】,由①得:x>-1,由②得:x>2,則不等式組的解集為x>2,即3是不等式組的解,故選D.【點睛】此題考查了解一元一次不等式組,熟練掌握運算法則是解本題的關(guān)鍵.6、D【解析】
先利用勾股定理計算出OP=1,然后根據(jù)點與圓的位置關(guān)系的判定方法得到r的范圍.【詳解】∵點P的坐標為(3,4),∴OP1.∵點P(3,4)在⊙O內(nèi),∴OP<r,即r>1.故選D.【點睛】本題考查了點與圓的位置關(guān)系:點的位置可以確定該點到圓心距離與半徑的關(guān)系,反過來已知點到圓心距離與半徑的關(guān)系可以確定該點與圓的位置關(guān)系.7、A【解析】分析:根據(jù)平行線的性質(zhì)求出∠C,求出∠DEC的度數(shù),根據(jù)三角形內(nèi)角和定理求出∠D的度數(shù)即可.詳解:∵AB∥CD,∴∠A+∠C=180°.∵∠A=120°,∴∠C=60°.∵DE⊥AC,∴∠DEC=90°,∴∠D=180°﹣∠C﹣∠DEC=30°.故選A.點睛:本題考查了平行線的性質(zhì)和三角形內(nèi)角和定理的應用,能根據(jù)平行線的性質(zhì)求出∠C的度數(shù)是解答此題的關(guān)鍵.8、B【解析】因為AB是⊙O的直徑,所以求得∠ADB=90°,進而求得∠B的度數(shù),又因為∠B=∠C,所以∠C的度數(shù)可求出.解:∵AB是⊙O的直徑,
∴∠ADB=90°.
∵∠BAD=25°,
∴∠B=65°,
∴∠C=∠B=65°(同弧所對的圓周角相等).
故選B.
9、B【解析】∵9<11<16,∴,∴故選B.10、B【解析】試題解析:由圖可知可以瞄準的點有2個..∴B球一次反彈后擊中A球的概率是.故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】
作BD⊥AC于點D,在直角△ABD中,利用三角函數(shù)求得BD的長,然后在直角△BCD中,利用三角函數(shù)即可求得BC的長.【詳解】∠CBA=25°+50°=75°,作BD⊥AC于點D,則∠CAB=(90°﹣70°)+(90°﹣50°)=20°+40°=60°,∠ABD=30°,∴∠CBD=75°﹣30°=45°,在直角△ABD中,BD=AB?sin∠CAB=20×sin60°=20×=10,在直角△BCD中,∠CBD=45°,則BC=BD=10×=10≈10×2.4=1(海里),故答案是:1.【點睛】本題考查了解直角三角形的應用——方向角問題,正確求得∠CBD以及∠CAB的度數(shù)是解決本題的關(guān)鍵.12、1【解析】試題分析:當點A、點C和點F三點共線的時候,線段CF的長度最小,點F在AC的中點,則CF=1.13、(1,-4)【解析】
利用旋轉(zhuǎn)的性質(zhì)即可解決問題.【詳解】如圖,由題意A(1,4),B(4,1),A根據(jù)旋轉(zhuǎn)的性質(zhì)可知′(4,-1),B′(1,-4);
所以,B′(1,-4);故答案為(1,-4).【點睛】本題考查反比例函數(shù)的旋轉(zhuǎn)變換,解題的關(guān)鍵是靈活運用所學知識解決問題.14、2【解析】
設MN=y,PC=x,根據(jù)正方形的性質(zhì)和勾股定理列出y1關(guān)于x的二次函數(shù)關(guān)系式,求二次函數(shù)的最值即可.【詳解】作MG⊥DC于G,如圖所示:設MN=y,PC=x,根據(jù)題意得:GN=2,MG=|10-1x|,在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,即y1=21+(10-1x)1.∵0<x<10,∴當10-1x=0,即x=2時,y1最小值=12,∴y最小值=2.即MN的最小值為2;故答案為:2.【點睛】本題考查了正方形的性質(zhì)、勾股定理、二次函數(shù)的最值.熟練掌握勾股定理和二次函數(shù)的最值是解決問題的關(guān)鍵.15、6【解析】
利用正方形的性質(zhì)和勾股定理可得AC的長,由角平分線的性質(zhì)和平行線的性質(zhì)可得∠CAE=∠E,易得CE=CA,由FA⊥AE,可得∠FAC=∠F,易得CF=AC,可得EF的長.【詳解】解:∵四邊形ABCD為正方形,且邊長為3,∴AC=3,∵AE平分∠CAD,∴∠CAE=∠DAE,∵AD∥CE,∴∠DAE=∠E,∴∠CAE=∠E,∴CE=CA=3,∵FA⊥AE,∴∠FAC+∠CAE=90°,∠F+∠E=90°,∴∠FAC=∠F,∴CF=AC=3,∴EF=CF+CE=3+3=616、9.26×1011【解析】試題解析:9260億=9.26×1011故答案為:9.26×1011點睛:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值大于1時,n是正數(shù);當原數(shù)的絕對值小于1時,n是負數(shù).三、解答題(共8題,共72分)17、(1)(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);(2)見解析;(3)直線PP'與x軸的交點坐標(﹣,0)【解析】
(1)①當P(-4,2)時,OA=2,PA=4,由旋轉(zhuǎn)知,∠P'AH=30°,進而P'H=P'A=2,AH=P'H=2,即可得出結(jié)論;②當P'(-5,16)時,確定出P'A=10,AH=5,由旋轉(zhuǎn)知,PA=PA'=10,OA=OH-AH=16-5,即可得出結(jié)論;③當P(a,b)時,同①的方法得,即可得出結(jié)論;(2)先判斷出∠BQQ'=60°,進而得出∠PAP'=∠PP'A=60°,即可得出∠P'QQ'=∠PAP'=60°,即可得出結(jié)論;(3)先確定出yPP'=x+3,即可得出結(jié)論.【詳解】解:(1)如圖1,①當P(﹣4,2)時,∵PA⊥y軸,∴∠PAH=90°,OA=2,PA=4,由旋轉(zhuǎn)知,P'A=4,∠PAP'=60°,∴∠P'AH=30°,在Rt△P'AH中,P'H=P'A=2,∴AH=P'H=2,∴OH=OA+AH=2+2,∴P'(﹣2,2+2),②當P'(﹣5,16)時,在Rt△P'AH中,∠P'AH=30°,P'H=5,∴P'A=10,AH=5,由旋轉(zhuǎn)知,PA=PA'=10,OA=OH﹣AH=16﹣5,∴P(﹣10,16﹣5),③當P(a,b)時,同①的方法得,P'(,b﹣a),故答案為:(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);(2)如圖2,過點Q作QB⊥y軸于B,∴∠BQQ'=60°,由題意知,△PAP'是等邊三角形,∴∠PAP'=∠PP'A=60°,∵QB⊥y軸,PA⊥y軸,∴QB∥PA,∴∠P'QQ'=∠PAP'=60°,∴∠P'QQ'=60°=∠PP'A,∴PP'∥QQ';(3)設yPP'=kx+b',由題意知,k=,∵直線經(jīng)過點(,6),∴b'=3,∴yPP'=x+3,令y=0,∴x=﹣,∴直線PP'與x軸的交點坐標(﹣,0).【點睛】此題是幾何變換綜合題,主要考查了含30度角的直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),等邊三角形的判定和性質(zhì),待定系數(shù)法,解本題的關(guān)鍵是理解新定義.18、7【解析】
根據(jù)分式的性質(zhì)及等式的性質(zhì)進行去分母,去括號,移項,合并同類項,未知數(shù)系數(shù)化為1即可.【詳解】-1=3-(x-3)=-13-x+3=-1x=7【點睛】此題主要考查分式方程的求解,解題的關(guān)鍵是正確去掉分母.19、見解析【解析】試題分析:證明△ABE≌△ACD即可.試題解析:法1:∵AB=AC,∴∠B=∠C,∵AD=CE,∴∠ADE=∠AED,∴△ABE≌△ACD,∴BE=CD,∴BD=CE,法2:如圖,作AF⊥BC于F,∵AB=AC,∴BF=CF,∵AD=AE,∴DF=EF,∴BF-DF=CF-EF,即BD=CE.20、(1)y=x2+3x;(2)當PO+PC的值最小時,點P的坐標為(2,);(3)存在,具體見解析.【解析】
(1)由條件可求得拋物線的頂點坐標及A點坐標,利用待定系數(shù)法可求得拋物線解析式;(2)D與P重合時有最小值,求出點D的坐標即可;(3)存在,分別根據(jù)①AC為對角線,②AC為邊,兩種情況,分別求解即可.【詳解】(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵拋物線經(jīng)過O、A兩點,且頂點在BC邊上,∴拋物線頂點坐標為(2,3),∴可設拋物線解析式為y=a(x﹣2)2+3,把A點坐標代入可得0=a(4﹣2)2+3,解得a=,∴拋物線解析式為y=(x﹣2)2+3,即y=x2+3x;(2)∵點P在拋物線對稱軸上,∴PA=PO,∴PO+PC=PA+PC.∴當點P與點D重合時,PA+PC=AC;當點P不與點D重合時,PA+PC>AC;∴當點P與點D重合時,PO+PC的值最小,設直線AC的解析式為y=kx+b,根據(jù)題意,得解得∴直線AC的解析式為,當x=2時,,∴當PO+PC的值最小時,點P的坐標為(2,);(3)存在.①AC為對角線,當四邊形AQCP為平行四邊形,點Q為拋物線的頂點,即Q(2,3),則P(2,0);②AC為邊,當四邊形AQPC為平行四邊形,點C向右平移2個單位得到P,則點A向右平移2個單位得到點Q,則Q點的橫坐標為6,當x=6時,,此時Q(6,?9),則點A(4,0)向右平移2個單位,向下平移9個單位得到點Q,所以點C(0,3)向右平移2個單位,向下平移9個單位得到點P,則P(2,?6);當四邊形APQC為平行四邊形,點A向左平移2個單位得到P,則點C向左平移2個單位得到點Q,則Q點的橫坐標為?2,當x=?2時,,此時Q(?2,?9),則點C(0,3)向左平移2個單位,向下平移12個單位得到點Q,所以點A(4,0)向左平移2個單位,向下平移12個單位得到點P,則P(2,?12);綜上所述,P(2,0),Q(2,3)或P(2,?6),Q(6,?9)或P(2,?12),Q(?2,?9).【點睛】二次函數(shù)的綜合應用,涉及矩形的性質(zhì)、待定系數(shù)法、平行四邊形的性質(zhì)、方程思想及分類討論思想等知識.21、(1)這兩年該市推行綠色建筑面積的年平均增長率為40%;(2)如果2017年仍保持相同的年平均增長率,2017年該市能完成計劃目標.【解析】試題分析:(1)設這兩年該市推行綠色建筑面積的年平均增長率x,根據(jù)2014年的綠色建筑面積約為700萬平方米和2016年達到了1183萬平方米,列出方程求解即可;(2)根據(jù)(1)求出的增長率問題,先求出預測2017年綠色建筑面積,再與計劃推行綠色建筑面積達到1500萬平方米進行比較,即可得出答案.試題解析:(1)設這兩年該市推行綠色建筑面積的年平均增長率為x,根據(jù)題意得:700(1+x)2=1183,解得:x1=0.3=30%,x2=﹣
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 嬰幼兒生長遲緩的早期識別與早期干預
- 成人霧化吸入護理團體標準考核試題
- 南通理工學院《腫瘤生物學導論》2023-2024學年第二學期期末試卷
- 吉林省松原市2024-2025學年第二學期高三第一次網(wǎng)上綜合模擬測試物理試題試卷含解析
- 山東英才學院《石油工程專業(yè)文獻檢索及論文寫作》2023-2024學年第一學期期末試卷
- 江西建設職業(yè)技術(shù)學院《道路與橋梁工程專業(yè)軟件應用》2023-2024學年第一學期期末試卷
- 江蘇省無錫市丁蜀學區(qū)2025屆初三一輪復習質(zhì)量檢測試題化學試題含解析
- 山西工學院《檢體診斷學》2023-2024學年第二學期期末試卷
- 溧陽市2024-2025學年數(shù)學四年級第二學期期末質(zhì)量檢測模擬試題含解析
- 吉林水利電力職業(yè)學院《行書技法》2023-2024學年第二學期期末試卷
- 2025年職業(yè)院校技能大賽“健身指導”賽項考試題庫(含答案)
- TCECS24-2020鋼結(jié)構(gòu)防火涂料應用技術(shù)規(guī)程
- 2025-2030中國滑石粉行業(yè)發(fā)展趨勢與投資戰(zhàn)略研究報告
- 2025春教科版(2024)小學一年級下冊科學全冊教案
- 智障個別化教育計劃案例(3篇)
- 西山煤電集團白家莊礦煤層開采初步設計
- 高速公路內(nèi)業(yè)資料規(guī)范化管理實施細則課件
- 最新金屬軟管設計制造新工藝新技術(shù)及性能測試實用手冊
- 心理咨詢記錄--個案5
- 節(jié)煤型高溫沸騰爐的結(jié)構(gòu)設計與應用
- 三維激光掃描在影視業(yè)中的應用
評論
0/150
提交評論