




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省西安市藍田縣重點達標名校2021-2022學年中考數學全真模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點落在對角線D′處.若AB=3,AD=4,則ED的長為A. B.3 C.1 D.2.過正方體中有公共頂點的三條棱的中點切出一個平面,形成如圖幾何體,其正確展開圖正確的為()A. B. C. D.3.如右圖,⊿ABC內接于⊙O,若∠OAB=28°則∠C的大小為()A.62° B.56° C.60° D.28°4.下列計算結果為a6的是()A.a2?a3B.a12÷a2C.(a2)3D.(﹣a2)35.下列計算正確的是()A.3a2﹣6a2=﹣3B.(﹣2a)?(﹣a)=2a2C.10a10÷2a2=5a5D.﹣(a3)2=a66.如圖,函數y=的圖象記為c1,它與x軸交于點O和點A1;將c1繞點A1旋轉180°得c2,交x軸于點A2;將c2繞點A2旋轉180°得c3,交x軸于點A3…如此進行下去,若點P(103,m)在圖象上,那么m的值是()A.﹣2 B.2 C.﹣3 D.47.如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB.添加一個條件,不能使四邊形DBCE成為矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90° D.CE⊥DE8.如圖,數軸上的A、B、C、D四點中,與數﹣表示的點最接近的是()A.點A B.點B C.點C D.點D9.如圖,AB為⊙O的直徑,CD是⊙O的弦,∠ADC=35°,則∠CAB的度數為(
)A.35° B.45° C.55° D.65°10.已知拋物線y=x2+bx+c的部分圖象如圖所示,若y<0,則x的取值范圍是()A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>3二、填空題(本大題共6個小題,每小題3分,共18分)11.在平面直角坐標系中,點A的坐標是(-1,2).作點A關于x軸的對稱點,得到點A1,再將點A1向下平移4個單位,得到點A2,則點A2的坐標是_________.12.如圖,邊長為6的菱形ABCD中,AC是其對角線,∠B=60°,點P在CD上,CP=2,點M在AD上,點N在AC上,則△PMN的周長的最小值為_____________.13.如圖,直線y=x與雙曲線y=交于A,B兩點,OA=2,點C在x軸的正半軸上,若∠ACB=90°,則點C的坐標為______.14.已知,,,是成比例的線段,其中,,,則_______.15.計算:a6÷a3=_________.16.已知三個數據3,x+3,3﹣x的方差為,則x=_____.三、解答題(共8題,共72分)17.(8分)如圖,四邊形AOBC是正方形,點C的坐標是(4,0).正方形AOBC的邊長為,點A的坐標是.將正方形AOBC繞點O順時針旋轉45°,點A,B,C旋轉后的對應點為A′,B′,C′,求點A′的坐標及旋轉后的正方形與原正方形的重疊部分的面積;動點P從點O出發,沿折線OACB方向以1個單位/秒的速度勻速運動,同時,另一動點Q從點O出發,沿折線OBCA方向以2個單位/秒的速度勻速運動,運動時間為t秒,當它們相遇時同時停止運動,當△OPQ為等腰三角形時,求出t的值(直接寫出結果即可).18.(8分)為上標保障我國海外維和部隊官兵的生活,現需通過A港口、B港口分別運送100噸和50噸生活物資.已知該物資在甲倉庫存有80噸,乙倉庫存有70噸,若從甲、乙兩倉庫運送物資到港口的費用(元/噸)如表所示:設從甲倉庫運送到A港口的物資為x噸,求總運費y(元)與x(噸)之間的函數關系式,并寫出x的取值范圍;求出最低費用,并說明費用最低時的調配方案.19.(8分)如圖,在四邊形ABCD中,AB=AD,BC=DC,AC、BD相交于點O,點E在AO上,且OE=OC.求證:∠1=∠2;連結BE、DE,判斷四邊形BCDE的形狀,并說明理由.20.(8分)如圖,已知點A(1,a)是反比例函數y1=的圖象上一點,直線y2=﹣與反比例函數y1=的圖象的交點為點B、D,且B(3,﹣1),求:(Ⅰ)求反比例函數的解析式;(Ⅱ)求點D坐標,并直接寫出y1>y2時x的取值范圍;(Ⅲ)動點P(x,0)在x軸的正半軸上運動,當線段PA與線段PB之差達到最大時,求點P的坐標.21.(8分)已知拋物線y=ax2+bx+2過點A(5,0)和點B(﹣3,﹣4),與y軸交于點C.(1)求拋物線y=ax2+bx+2的函數表達式;(2)求直線BC的函數表達式;(3)點E是點B關于y軸的對稱點,連接AE、BE,點P是折線EB﹣BC上的一個動點,①當點P在線段BC上時,連接EP,若EP⊥BC,請直接寫出線段BP與線段AE的關系;②過點P作x軸的垂線與過點C作的y軸的垂線交于點M,當點M不與點C重合時,點M關于直線PC的對稱點為點M′,如果點M′恰好在坐標軸上,請直接寫出此時點P的坐標.22.(10分)已知,拋物線y=﹣x2+bx+c經過點A(﹣1,0)和C(0,3).(1)求拋物線的解析式;(2)設點M在拋物線的對稱軸上,當△MAC是以AC為直角邊的直角三角形時,求點M的坐標.23.(12分)如圖,在△ABC中,∠BAC=90°,AB=AC,D為AB邊上一點,連接CD,過點A作AE⊥CD于點E,且交BC于點F,AG平分∠BAC交CD于點G.求證:BF=AG.24.學校決定在學生中開設:A、實心球;B、立定跳遠;C、跳繩;D、跑步四種活動項目.為了了解學生對四種項目的喜歡情況,隨機抽取了部分學生進行調查,并將調查結果繪制成如圖①②的統計圖,請結合圖中的信息解答下列問題:(1)在這項調查中,共調查了多少名學生?(2)請計算本項調查中喜歡“立定跳遠”的學生人數和所占百分比,并將兩個統計圖補充完整.(3)若調查到喜歡“跳繩”的5名學生中有2名男生,3名女生,現從這5名學生中任意抽取2名學生,請用畫樹狀圖或列表法求出剛好抽到不同性別學生的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
首先利用勾股定理計算出AC的長,再根據折疊可得△DEC≌△D′EC,設ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根據勾股定理可得方程22+x2=(4﹣x)2,再解方程即可【詳解】∵AB=3,AD=4,∴DC=3∴根據勾股定理得AC=5根據折疊可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E設ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,解得:x=故選A.2、B【解析】試題解析:選項折疊后都不符合題意,只有選項折疊后兩個剪去三角形與另一個剪去的三角形交于一個頂點,與正方體三個剪去三角形交于一個頂點符合.故選B.3、A【解析】
連接OB.在△OAB中,OA=OB(⊙O的半徑),∴∠OAB=∠OBA(等邊對等角);又∵∠OAB=28°,∴∠OBA=28°;∴∠AOB=180°-2×28°=124°;而∠C=∠AOB(同弧所對的圓周角是所對的圓心角的一半),∴∠C=62°;故選A4、C【解析】
分別根據同底數冪相乘、同底數冪相除、冪的乘方的運算法則逐一計算可得.【詳解】A、a2?a3=a5,此選項不符合題意;
B、a12÷a2=a10,此選項不符合題意;
C、(a2)3=a6,此選項符合題意;
D、(-a2)3=-a6,此選項不符合題意;
故選C.【點睛】本題主要考查冪的運算,解題的關鍵是掌握同底數冪相乘、同底數冪相除、冪的乘方的運算法則.5、B【解析】
根據整式的運算法則分別計算可得出結論.【詳解】選項A,由合并同類項法則可得3a2﹣6a2=﹣3a2,不正確;選項B,單項式乘單項式的運算可得(﹣2a)?(﹣a)=2a2,正確;選項C,根據整式的除法可得10a10÷2a2=5a8,不正確;選項D,根據冪的乘方可得﹣(a3)2=﹣a6,不正確.故答案選B.考點:合并同類項;冪的乘方與積的乘方;單項式乘單項式.6、C【解析】
求出與x軸的交點坐標,觀察圖形可知第奇數號拋物線都在x軸上方,然后求出到拋物線平移的距離,再根據向右平移橫坐標加表示出拋物線的解析式,然后把點P的坐標代入計算即可得解.【詳解】令,則=0,解得,,由圖可知,拋物線在x軸下方,相當于拋物線向右平移4×(26?1)=100個單位得到得到,再將繞點旋轉180°得,此時的解析式為y=(x?100)(x?100?4)=(x?100)(x?104),在第26段拋物線上,m=(103?100)(103?104)=?3.故答案是:C.【點睛】本題考查的知識點是二次函數圖象與幾何變換,解題關鍵是根據題意得到p點所在函數表達式.7、B【解析】
先證明四邊形DBCE為平行四邊形,再根據矩形的判定進行解答.【詳解】∵四邊形ABCD為平行四邊形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四邊形BCED為平行四邊形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴?DBCE為矩形,故本選項錯誤;B、∵對角線互相垂直的平行四邊形為菱形,不一定為矩形,故本選項正確;C、∵∠ADB=90°,∴∠EDB=90°,∴?DBCE為矩形,故本選項錯誤;D、∵CE⊥DE,∴∠CED=90°,∴?DBCE為矩形,故本選項錯誤,故選B.【點睛】本題考查了平行四邊形的性質與判定,矩形的判定等,熟練掌握相關的判定定理與性質定理是解題的關鍵.8、B【解析】
,計算-1.732與-3,-2,-1的差的絕對值,確定絕對值最小即可.【詳解】,,,,因為0.268<0.732<1.268,所以表示的點與點B最接近,故選B.9、C【解析】分析:由同弧所對的圓周角相等可知∠B=∠ADC=35°;而由圓周角的推論不難得知∠ACB=90°,則由∠CAB=90°-∠B即可求得.詳解:∵∠ADC=35°,∠ADC與∠B所對的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直徑,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故選C.點睛:本題考查了同弧所對的圓周角相等以及直徑所對的圓周角是直角等知識.10、B【解析】試題分析:觀察圖象可知,拋物線y=x2+bx+c與x軸的交點的橫坐標分別為(﹣1,0)、(1,0),所以當y<0時,x的取值范圍正好在兩交點之間,即﹣1<x<1.故選B.考點:二次函數的圖象.106144二、填空題(本大題共6個小題,每小題3分,共18分)11、(-1,-6)【解析】
直接利用關于x軸對稱點的性質得出點A1坐標,再利用平移的性質得出答案.【詳解】∵點A的坐標是(-1,2),作點A關于x軸的對稱點,得到點A1,
∴A1(-1,-2),
∵將點A1向下平移4個單位,得到點A2,
∴點A2的坐標是:(-1,-6).
故答案為:(-1,-6).【點睛】解決本題的關鍵是掌握好對稱點的坐標規律:(1)關于x軸對稱的點,橫坐標相同,縱坐標互為相反數;(2)關于y軸對稱的點,縱坐標相同,橫坐標互為相反數;(3)關于原點對稱的點,橫坐標與縱坐標都互為相反數.12、2【解析】
過P作關于AC和AD的對稱點,連接和,過P作,和,M,N共線時最短,根據對稱性得知△PMN的周長的最小值為.因為四邊形ABCD是菱形,AD是對角線,可以求得,根據特殊三角形函數值求得,,再根據線段相加勾股定理即可求解.【詳解】過P作關于AC和AD的對稱點,連接和,過P作,四邊形ABCD是菱形,AD是對角線,,,,,又由題意得【點睛】本題主要考查對稱性質,菱形性質,內角和定理和勾股定理,熟悉掌握定理是關鍵.13、(2,0)【解析】
根據直線y=x與雙曲線y=交于A,B兩點,OA=2,可得AB=2AO=4,再根據Rt△ABC中,OC=AB=2,即可得到點C的坐標【詳解】如圖所示,∵直線y=x與雙曲線y=交于A,B兩點,OA=2,∴AB=2AO=4,又∵∠ACB=90°,∴Rt△ABC中,OC=AB=2,又∵點C在x軸的正半軸上,∴C(2,0),故答案為(2,0).【點睛】本題主要考查了反比例函數與一次函數交點問題,解決問題的關鍵是利用直角三角形斜邊上中線的性質得到OC的長.14、【解析】
如果其中兩條線段的乘積等于另外兩條線段的乘積,則四條線段叫成比例線段.根據定義ad=cb,將a,b及c的值代入即可求得d.【詳解】已知a,b,c,d是成比例線段,根據比例線段的定義得:ad=cb,代入a=3,b=2,c=6,解得:d=4,則d=4cm.故答案為:4【點睛】本題主要考查比例線段的定義.要注意考慮問題要全面.15、a1【解析】
根據同底數冪相除,底數不變指數相減計算即可【詳解】a6÷a1=a6﹣1=a1.故答案是a1【點睛】同底數冪的除法運算性質16、±1【解析】
先由平均數的計算公式求出這組數據的平均數,再代入方差公式進行計算,即可求出x的值.【詳解】解:這三個數的平均數是:(3+x+3+3-x)÷3=3,則方差是:[(3-3)2+(x+3-3)2+(3-x-3)2]=,解得:x=±1;故答案為:±1.【點睛】本題考查方差的定義:一般地設n個數據,x1,x2,…xn的平均數為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數據的波動大小,方差越大,波動性越大,反之也成立.三、解答題(共8題,共72分)17、(1)4,;(2)旋轉后的正方形與原正方形的重疊部分的面積為;(3).【解析】
(1)連接AB,根據△OCA為等腰三角形可得AD=OD的長,從而得出點A的坐標,則得出正方形AOBC的面積;
(2)根據旋轉的性質可得OA′的長,從而得出A′C,A′E,再求出面積即可;
(3)根據P、Q點在不同的線段上運動情況,可分為三種列式①當點P、Q分別在OA、OB時,②當點P在OA上,點Q在BC上時,③當點P、Q在AC上時,可方程得出t.【詳解】解:(1)連接AB,與OC交于點D,四邊形是正方形,
∴△OCA為等腰Rt△,∴AD=OD=OC=2,
∴點A的坐標為.4,.(2)如圖∵四邊形是正方形,∴,.∵將正方形繞點順時針旋轉,∴點落在軸上.∴.∴點的坐標為.∵,∴.∵四邊形,是正方形,∴,.∴,.∴.∴.∵,,∴.∴旋轉后的正方形與原正方形的重疊部分的面積為.(3)設t秒后兩點相遇,3t=16,∴t=①當點P、Q分別在OA、OB時,∵,OP=t,OQ=2t∴不能為等腰三角形②當點P在OA上,點Q在BC上時如圖2,當OQ=QP,QM為OP的垂直平分線,
OP=2OM=2BQ,OP=t,BQ=2t-4,
t=2(2t-4),
解得:t=.③當點P、Q在AC上時,不能為等腰三角形綜上所述,當時是等腰三角形【點睛】此題考查了正方形的性質,等腰三角形的判定以及旋轉的性質,是中考壓軸題,綜合性較強,難度較大.18、(1)y=﹣8x+2560(30≤x≤1);(2)把甲倉庫的全部運往A港口,再從乙倉庫運20噸往A港口,乙倉庫的余下的全部運往B港口.【解析】試題分析:(1)設從甲倉庫運x噸往A港口,根據題意得從甲倉庫運往B港口的有(1﹣x)噸,從乙倉庫運往A港口的有噸,運往B港口的有50﹣(1﹣x)=(x﹣30)噸,再由等量關系:總運費=甲倉庫運往A港口的費用+甲倉庫運往B港口的費用+乙倉庫運往A港口的費用+乙倉庫運往B港口的費用列式并化簡,即可得總運費y(元)與x(噸)之間的函數關系式;由題意可得x≥0,8-x≥0,x-30≥0,100-x≥0,即可得出x的取值;(2)因為所得的函數為一次函數,由增減性可知:y隨x增大而減少,則當x=1時,y最小,并求出最小值,寫出運輸方案.試題解析:(1)設從甲倉庫運x噸往A港口,則從甲倉庫運往B港口的有(1﹣x)噸,從乙倉庫運往A港口的有噸,運往B港口的有50﹣(1﹣x)=(x﹣30)噸,所以y=14x+20+10(1﹣x)+8(x﹣30)=﹣8x+2560,x的取值范圍是30≤x≤1.(2)由(1)得y=﹣8x+2560y隨x增大而減少,所以當x=1時總運費最小,當x=1時,y=﹣8×1+2560=1920,此時方案為:把甲倉庫的全部運往A港口,再從乙倉庫運20噸往A港口,乙倉庫的余下的全部運往B港口.考點:一次函數的應用.19、(1)證明見解析;(2)四邊形BCDE是菱形,理由見解析.【解析】
(1)證明△ADC≌△ABC后利用全等三角形的對應角相等證得結論.(2)首先判定四邊形BCDE是平行四邊形,然后利用對角線垂直的平行四邊形是菱形判定菱形即可.【詳解】解:(1)證明:∵在△ADC和△ABC中,∴△ADC≌△ABC(SSS).∴∠1=∠2.(2)四邊形BCDE是菱形,理由如下:如答圖,∵∠1=∠2,DC=BC,∴AC垂直平分BD.∵OE=OC,∴四邊形DEBC是平行四邊形.∵AC⊥BD,∴四邊形DEBC是菱形.【點睛】考點:1.全等三角形的判定和性質;2.線段垂直平分線的性質;3.菱形的判定.20、(1)反比例函數的解析式為y=﹣;(2)D(﹣2,);﹣2<x<0或x>3;(3)P(4,0).【解析】試題分析:(1)把點B(3,﹣1)帶入反比例函數中,即可求得k的值;(2)聯立直線和反比例函數的解析式構成方程組,化簡為一個一元二次方程,解方程即可得到點D坐標,觀察圖象可得相應x的取值范圍;(3)把A(1,a)是反比例函數的解析式,求得a的值,可得點A坐標,用待定系數法求得直線AB的解析式,令y=0,解得x的值,即可求得點P的坐標.試題解析:(1)∵B(3,﹣1)在反比例函數的圖象上,∴-1=,∴m=-3,∴反比例函數的解析式為;(2),∴=,x2-x-6=0,(x-3)(x+2)=0,x1=3,x2=-2,當x=-2時,y=,∴D(-2,);y1>y2時x的取值范圍是-2<x<0或x>;(3)∵A(1,a)是反比例函數的圖象上一點,∴a=-3,∴A(1,-3),設直線AB為y=kx+b,,∴,∴直線AB為y=x-4,令y=0,則x=4,∴P(4,0)21、(1)y=﹣310x2+1110x+2;(2)y=2x+2;(3)①線段BP與線段AE的關系是相互垂直;②點P的坐標為:(﹣4+23,﹣8+43)或(﹣4﹣23,﹣8﹣43)或(0,﹣4)或(﹣【解析】
(1)將A(5,0)和點B(﹣3,﹣4)代入y=ax2+bx+2,即可求解;(2)C點坐標為(0,2),把點B、C的坐標代入直線方程y=kx+b即可求解;(3)①AE直線的斜率kAE=2,而直線BC斜率的kAE=2即可求解;②考慮當P點在線段BC上時和在線段BE上時兩種情況,利用PM′=PM即可求解.【詳解】(1)將A(5,0)和點B(﹣3,﹣4)代入y=ax2+bx+2,解得:a=﹣,b=,故函數的表達式為y=﹣x2+x+2;(2)C點坐標為(0,2),把點B、C的坐標代入直線方程y=kx+b,解得:k=2,b=2,故:直線BC的函數表達式為y=2x+2,(3)①E是點B關于y軸的對稱點,E坐標為(3,﹣4),則AE直線的斜率kAE=2,而直線BC斜率的kAE=2,∴AE∥BC,而EP⊥BC,∴BP⊥AE而BP=AE,∴線段BP與線段AE的關系是相互垂直;②設點P的橫坐標為m,當P點在線段BC上時,P坐標為(m,2m+2),M坐標為(m,2),則PM=2m,直線MM′⊥BC,∴kMM′=﹣,直線MM′的方程為:y=﹣x+(2+m),則M′坐標為(0,2+m)或(4+m,0),由題意得:PM′=PM=2m,PM′2=42+m2=(2m)2,此式不成立,或PM′2=m2+(2m+2)2=(2m)2,解得:m=﹣4±2,故點P的坐標為(﹣4±2,﹣8±4);當P點在線段BE上時,點P坐標為(m,﹣4),點M坐標為(m,2),則PM=6,直線MM′的方程不變,為y=﹣x+(2+m),則M′坐標為(0,2+m)或(4+m,0),PM′2=m2+(6+m)2=(2m)2,解得:m=0,或﹣;或PM′2=42+42=(6)2,無解;故點P的坐標為(0,﹣4)或(﹣,﹣4);綜上所述:點P的坐標為:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).【點睛】主要考查了二次函數的解析式的求法和與幾何圖形結合的綜合能力的培養.要會利用數形結合的思想把代數和幾何圖形結合起來,利用點的坐標的意義表示線段的長度,從而求出線段之間的關系.22、(1)y=﹣x2+2x+1;(2)當△MAC是直角三角形時,點M的坐標為(1,)或(1,﹣).【解析】
(1)由點A、C的坐標,利用待定系數法即可求出拋物線的解析式;(2)設點M的坐標為(1,m),則CM=,AC=,AM=,分∠ACM=90°和∠CAM=90°兩種情況,利用勾股定理可得出關于m的方程,解之可得出m的值,進而即可得出點M的坐標.【詳解】(1)將A(﹣1,0)、C(0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 運輸路線安排方案范本
- 重慶工商大學《醫學影像設備學實驗》2023-2024學年第一學期期末試卷
- 浚縣民豐渠施工方案
- 蘇州衛生職業技術學院《畫法幾何學》2023-2024學年第二學期期末試卷
- 江西中醫藥大學《工程管理專業英語》2023-2024學年第二學期期末試卷
- 襄陽職業技術學院《人體發育與形態結構學2》2023-2024學年第二學期期末試卷
- 南京大學金陵學院《中藥生物技術》2023-2024學年第二學期期末試卷
- 南京師范大學《工程項目管理實驗》2023-2024學年第二學期期末試卷
- 重慶工商職業學院《臨床綜合技能訓練》2023-2024學年第一學期期末試卷
- 蘇州城市學院《智能工廠系統》2023-2024學年第二學期期末試卷
- 林業專業知識考試試題及答案
- 高三英語語法填空專項訓練100(附答案)及解析
- 項目一任務一《家宴菜單設計》課件浙教版初中勞動技術八年級下冊
- 民用無人機操控員執照(CAAC)考試復習重點題庫500題(含答案)
- 腰痛中醫辯證
- 部編版一年級上冊語文第八單元 作業設計
- 20以內加減法混合計算題進位加退位減幼兒小學生口算訓練
- 2024年4月自考04735數據庫系統原理試題及答案
- JTG-T-D33-2012公路排水設計規范
- 2024光伏電站索懸柔性支架施工方案
- GJB9001C-2017管理手冊、程序文件及表格匯編
評論
0/150
提交評論