2022年浙江省湖州長興縣聯考畢業升學考試模擬卷數學卷含解析_第1頁
2022年浙江省湖州長興縣聯考畢業升學考試模擬卷數學卷含解析_第2頁
2022年浙江省湖州長興縣聯考畢業升學考試模擬卷數學卷含解析_第3頁
2022年浙江省湖州長興縣聯考畢業升學考試模擬卷數學卷含解析_第4頁
2022年浙江省湖州長興縣聯考畢業升學考試模擬卷數學卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022年浙江省湖州長興縣聯考畢業升學考試模擬卷數學卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列各組數中,互為相反數的是()A.﹣1與(﹣1)2 B.(﹣1)2與1 C.2與 D.2與|﹣2|2.在0,﹣2,3,四個數中,最小的數是()A.0 B.﹣2 C.3 D.3.若分式有意義,則a的取值范圍為()A.a≠4 B.a>4 C.a<4 D.a=44.已知反比例函數y=﹣,當1<x<3時,y的取值范圍是()A.0<y<1 B.1<y<2 C.﹣2<y<﹣1 D.﹣6<y<﹣25.一組數據1,2,3,3,4,1.若添加一個數據3,則下列統計量中,發生變化的是()A.平均數 B.眾數 C.中位數 D.方差6.如圖所示,將含有30°角的三角板的直角頂點放在相互平行的兩條直線其中一條上,若∠1=35°,則∠2的度數為()A.10° B.20° C.25° D.30°7.我國古代數學著作《九章算術》卷七“盈不足”中有這樣一個問題:“今有共買物,人出八,盈三;人出七,不足四,問人數、物價各幾何?”意思是:幾個人合伙買一件物品,每人出8元,則余3元;若每人出7元,則少4元,問幾人合買?這件物品多少錢?若設有x人合買,這件物品y元,則根據題意列出的二元一次方程組為()A. B. C. D.8.下列計算正確的是()A.﹣5x﹣2x=﹣3x B.(a+3)2=a2+9 C.(﹣a3)2=a5 D.a2p÷a﹣p=a3p9.下列圖案中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.10.一元二次方程x2﹣2x=0的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣2二、填空題(共7小題,每小題3分,滿分21分)11.某物流倉儲公司用如圖A,B兩種型號的機器人搬運物品,已知A型機器人比B型機器人每小時多搬運20kg,A型機器人搬運1000kg所用時間與B型機器人搬運800kg所用時間相等,設B型機器人每小時搬運xkg物品,列出關于x的方程為_____.12.若a2+3=2b,則a3﹣2ab+3a=_____.13.的算術平方根為______.14.點P的坐標是(a,b),從-2,-1,0,1,2這五個數中任取一個數作為a的值,再從余下的四個數中任取一個數作為b的值,則點P(a,b)在平面直角坐標系中第二象限內的概率是.15.一個多項式與的積為,那么這個多項式為.16.(﹣12)﹣2﹣(3.14﹣π)017.在平面直角坐標系的第一象限內,邊長為1的正方形ABCD的邊均平行于坐標軸,A點的坐標為(a,a).如圖,若曲線與此正方形的邊有交點,則a的取值范圍是________.三、解答題(共7小題,滿分69分)18.(10分)截至2018年5月4日,中歐班列(鄭州)去回程開行共計1191班,我省與歐洲各國經貿往來日益頻繁,某歐洲客商準備在河南采購一批特色商品,經調查,用1600元采購A型商品的件數是用1000元采購B型商品的件數的2倍,一件A型商品的進價比一件B型商品的進價少20元,已知A型商品的售價為160元,B型商品的售價為240元,已知該客商購進甲乙兩種商品共200件,設其中甲種商品購進x件,該客商售完這200件商品的總利潤為y元(1)求A、B型商品的進價;(2)該客商計劃最多投入18000元用于購買這兩種商品,則至少要購進多少件甲商品?若售完這些商品,則商場可獲得的最大利潤是多少元?(3)在(2)的基礎上,實際進貨時,生產廠家對甲種商品的出廠價下調a元(50<a<70)出售,且限定商場最多購進120件,若客商保持同種商品的售價不變,請你根據以上信息及(2)中的條件,設計出使該客商獲得最大利潤的進貨方案.19.(5分)如圖1,在矩形ABCD中,AD=4,AB=2,將矩形ABCD繞點A逆時針旋轉α(0<α<90°)得到矩形AEFG.延長CB與EF交于點H.(1)求證:BH=EH;(2)如圖2,當點G落在線段BC上時,求點B經過的路徑長.20.(8分)如圖,在自動向西的公路l上有一檢查站A,在觀測點B的南偏西53°方向,檢查站一工作人員家住在與觀測點B的距離為7km,位于點B南偏西76°方向的點C處,求工作人員家到檢查站的距離AC.(參考數據:sin76°≈,cos76°≈,tan76°≈4,sin53°≈,tan53°≈)21.(10分)如圖,⊙O直徑AB和弦CD相交于點E,AE=2,EB=6,∠DEB=30°,求弦CD長.22.(10分)如圖,拋物線經過點A(﹣2,0),點B(0,4).(1)求這條拋物線的表達式;(2)P是拋物線對稱軸上的點,聯結AB、PB,如果∠PBO=∠BAO,求點P的坐標;(3)將拋物線沿y軸向下平移m個單位,所得新拋物線與y軸交于點D,過點D作DE∥x軸交新拋物線于點E,射線EO交新拋物線于點F,如果EO=2OF,求m的值.23.(12分)如圖,直線y=﹣x+3分別與x軸、y交于點B、C;拋物線y=x2+bx+c經過點B、C,與x軸的另一個交點為點A(點A在點B的左側),對稱軸為l1,頂點為D.(1)求拋物線y=x2+bx+c的解析式.(2)點M(1,m)為y軸上一動點,過點M作直線l2平行于x軸,與拋物線交于點P(x1,y1),Q(x2,y2),與直線BC交于點N(x3,y3),且x2>x1>1.①結合函數的圖象,求x3的取值范圍;②若三個點P、Q、N中恰好有一點是其他兩點所連線段的中點,求m的值.24.(14分)一名在校大學生利用“互聯網+”自主創業,銷售一種產品,這種產品成本價10元/件,已知銷售價不低于成本價,且物價部門規定這種產品的銷售價不高于16元/件,市場調查發現,該產品每天的銷售量y(件)與銷售價x(元/件)之間的函數關系如圖所示.(1)求y與x之間的函數關系式,并寫出自變量x的取值范圍;(2)求每天的銷售利潤W(元)與銷售價x(元/件)之間的函數關系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

根據相反數的定義,對每個選項進行判斷即可.【詳解】解:A、(﹣1)2=1,1與﹣1互為相反數,正確;B、(﹣1)2=1,故錯誤;C、2與互為倒數,故錯誤;D、2=|﹣2|,故錯誤;故選:A.【點睛】本題考查了相反數的定義,解題的關鍵是掌握相反數的定義.2、B【解析】

根據實數比較大小的法則進行比較即可.【詳解】∵在這四個數中3>0,>0,-2<0,∴-2最小.故選B.【點睛】本題考查的是實數的大小比較,即正實數都大于0,負實數都小于0,正實數大于一切負實數,兩個負實數絕對值大的反而小.3、A【解析】

分式有意義時,分母a-4≠0【詳解】依題意得:a?4≠0,解得a≠4.故選:A【點睛】此題考查分式有意義的條件,難度不大4、D【解析】

根據反比例函數的性質可以求得y的取值范圍,從而可以解答本題.【詳解】解:∵反比例函數y=﹣,∴在每個象限內,y隨x的增大而增大,∴當1<x<3時,y的取值范圍是﹣6<y<﹣1.故選D.【點睛】本題考查了反比例函數的性質,解答本題的關鍵是明確題意,求出相應的y的取值范圍,利用反比例函數的性質解答.5、D【解析】A.∵原平均數是:(1+2+3+3+4+1)÷6=3;添加一個數據3后的平均數是:(1+2+3+3+4+1+3)÷7=3;∴平均數不發生變化.B.∵原眾數是:3;添加一個數據3后的眾數是:3;∴眾數不發生變化;C.∵原中位數是:3;添加一個數據3后的中位數是:3;∴中位數不發生變化;D.∵原方差是:;添加一個數據3后的方差是:;∴方差發生了變化.故選D.點睛:本題主要考查的是眾數、中位數、方差、平均數的,熟練掌握相關概念和公式是解題的關鍵.6、C【解析】分析:如圖,延長AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故選C.7、D【解析】

根據題意可以找出題目中的等量關系,列出相應的方程組,從而可以解答本題.【詳解】由題意可得:,故選D.【點睛】本題考查由實際問題抽象出二元一次方程組,解答本題的關鍵是明確題意,列出相應的方程組.8、D【解析】

直接利用合并同類項法則以及完全平方公式和整式的乘除運算法則分別計算即可得出答案.【詳解】解:A.﹣5x﹣2x=﹣7x,故此選項錯誤;B.(a+3)2=a2+6a+9,故此選項錯誤;C.(﹣a3)2=a6,故此選項錯誤;D.a2p÷a﹣p=a3p,正確.故選D.【點睛】本題主要考查了合并同類項以及完全平方公式和整式的乘除運算,正確掌握運算法則是解題的關鍵.9、B【解析】

根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;

B、是軸對稱圖形,也是中心對稱圖形,故此選項正確;

C、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;

D、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤.

故選B.【點睛】考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.10、C【解析】

方程左邊分解因式后,利用兩數相乘積為0,兩因式中至少有一個為0轉化為兩個一元一次方程來求解.【詳解】方程變形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x1=1.故選C.【點睛】考查了解一元二次方程﹣因式分解法,熟練掌握因式分解的方法是解本題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

設B型機器人每小時搬運x

kg物品,則A型機器人每小時搬運(x+20)kg物品,根據“A型機器人搬運1000kg所用時間與B型機器人搬運800kg所用時間相等”可列方程.【詳解】設B型機器人每小時搬運x

kg物品,則A型機器人每小時搬運(x+20)kg物品,根據題意可得,故答案為.【點睛】本題考查了由實際問題抽象出分式方程,解題的關鍵是根據數量關系列出關于x的分式方程.本題屬于基礎題,難度不大,解決該題型題目時,根據數量關系列出方程是關鍵.12、1【解析】

利用提公因式法將多項式分解為a(a2+3)-2ab,將a2+3=2b代入可求出其值.【詳解】解:∵a2+3=2b,∴a3-2ab+3a=a(a2+3)-2ab=2ab-2ab=1,故答案為1.【點睛】本題考查了因式分解的應用,利用提公因式法將多項式分解是本題的關鍵.13、【解析】

首先根據算術平方根的定義計算先=2,再求2的算術平方根即可.【詳解】∵=2,∴的算術平方根為.【點睛】本題考查了算術平方根,屬于簡單題,熟悉算數平方根的概念是解題關鍵.14、【解析】畫樹狀圖為:共有20種等可能的結果數,其中點P(a,b)在平面直角坐標系中第二象限內的結果數為4,所以點P(a,b)在平面直角坐標系中第二象限內的概率==.故答案為.15、【解析】試題分析:依題意知=考點:整式運算點評:本題難度較低,主要考查學生對整式運算中多項式計算知識點的掌握。同底數冪相乘除,指數相加減。16、3.【解析】試題分析:分別根據零指數冪,負指數冪的運算法則計算,然后根據實數的運算法則求得計算結果.原式=4-1=3.考點:負整數指數冪;零指數冪.17、-1≤a≤【解析】

根據題意得出C點的坐標(a-1,a-1),然后分別把A、C的坐標代入求得a的值,即可求得a的取值范圍.【詳解】解:反比例函數經過點A和點C.當反比例函數經過點A時,即=3,解得:a=±(負根舍去);當反比例函數經過點C時,即=3,解得:a=1±(負根舍去),則-1≤a≤.故答案為:-1≤a≤.【點睛】本題考查的是反比例函數圖象上點的坐標特點,關鍵是掌握反比例函數y=(k為常數,k≠0)的圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.三、解答題(共7小題,滿分69分)18、(1)80,100;(2)100件,22000元;(3)答案見解析.【解析】

(1)先設A型商品的進價為a元/件,求得B型商品的進價為(a+20)元/件,由題意得等式,解得a=80,再檢驗a是否符合條件,得到答案.(2)先設購機A型商品x件,則由題意可得到等式80x+100(200﹣x)≤18000,解得,x≥100;再設獲得的利潤為w元,由題意可得w=(160﹣80)x+(240﹣100)(200﹣x)=﹣60x+28000,當x=100時代入w=﹣60x+28000,從而得答案.(3)設獲得的利潤為w元,由題意可得w(a﹣60)x+28000,分類討論:當50<a<60時,當a=60時,當60<a<70時,各個階段的利潤,得出最大值.【詳解】解:(1)設A型商品的進價為a元/件,則B型商品的進價為(a+20)元/件,,解得,a=80,經檢驗,a=80是原分式方程的解,∴a+20=100,答:A、B型商品的進價分別為80元/件、100元/件;(2)設購機A型商品x件,80x+100(200﹣x)≤18000,解得,x≥100,設獲得的利潤為w元,w=(160﹣80)x+(240﹣100)(200﹣x)=﹣60x+28000,∴當x=100時,w取得最大值,此時w=22000,答:該客商計劃最多投入18000元用于購買這兩種商品,則至少要購進100件甲商品,若售完這些商品,則商場可獲得的最大利潤是22000元;(3)w=(160﹣80+a)x+(240﹣100)(200﹣x)=(a﹣60)x+28000,∵50<a<70,∴當50<a<60時,a﹣60<0,y隨x的增大而減小,則甲100件,乙100件時利潤最大;當a=60時,w=28000,此時甲乙只要是滿足條件的整數即可;當60<a<70時,a﹣60>0,y隨x的增大而增大,則甲120件,乙80件時利潤最大.【點睛】本題考察一次函數的應用及一次不等式的應用,屬于中檔題,難度不大.19、(1)見解析;(2)B點經過的路徑長為π.【解析】

(1)、連接AH,根據旋轉圖形的性質得出AB=AE,∠ABH=∠AEH=90°,根據AH為公共邊得出Rt△ABH和Rt△AEH全等,從而得出答案;(2)、根據題意得出∠EAB的度數,然后根據弧長的計算公式得出答案.【詳解】(1)、證明:如圖1中,連接AH,由旋轉可得AB=AE,∠ABH=∠AEH=90°,又∵AH=AH,∴Rt△ABH≌Rt△AEH,∴BH=EH.(2)、解:由旋轉可得AG=AD=4,AE=AB,∠EAG=∠BAC=90°,在Rt△ABG中,AG=4,AB=2,∴cos∠BAG=,∴∠BAG=30°,∴∠EAB=60°,∴弧BE的長為=π,即B點經過的路徑長為π.【點睛】本題主要考查的是旋轉圖形的性質以及扇形的弧長計算公式,屬于中等難度的題型.明白旋轉圖形的性質是解決這個問題的關鍵.20、工作人員家到檢查站的距離AC的長約為km.【解析】分析:過點B作BH⊥l交l于點H,解Rt△BCH,得出CH=BC?sin∠CBH=,BH=BC?cos∠CBH=.再解Rt△BAH中,求出AH=BH?tan∠ABH=,那么根據AC=CH-AH計算即可.詳解:如圖,過點B作BH⊥l交l于點H,∵在Rt△BCH中,∠BHC=90°,∠CBH=76°,BC=7km,∴CH=BC?sin∠CBH≈,BH=BC?cos∠CBH≈.∵在Rt△BAH中,∠BHA=90°,∠ABH=53°,BH=,∴AH=BH?tan∠ABH≈,∴AC=CH﹣AH=(km).答:工作人員家到檢查站的距離AC的長約為km.點睛:本題考查的是解直角三角形的應用-方向角問題,根據題意作出輔助線,構造出直角三角形是解答此題的關鍵.21、2【解析】試題分析:過O作OF垂直于CD,連接OD,利用垂徑定理得到F為CD的中點,由AE+EB求出直徑AB的長,進而確定出半徑OA與OD的長,由OA﹣AE求出OE的長,在直角三角形OEF中,利用30°所對的直角邊等于斜邊的一半求出OF的長,在直角三角形ODF中,利用勾股定理求出DF的長,由CD=2DF即可求出CD的長.試題解析:過O作OF⊥CD,交CD于點F,連接OD,∴F為CD的中點,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=12在Rt△ODF中,OF=1,OD=4,根據勾股定理得:DF=OD2-O則CD=2DF=215.考點:垂徑定理;勾股定理.22、(1);(2)P(1,);(3)3或5.【解析】

(1)將點A、B代入拋物線,用待定系數法求出解析式.(2)對稱軸為直線x=1,過點P作PG⊥y軸,垂足為G,由∠PBO=∠BAO,得tan∠PBO=tan∠BAO,即,可求出P的坐標.(3)新拋物線的表達式為,由題意可得DE=2,過點F作FH⊥y軸,垂足為H,∵DE∥FH,EO=2OF,∴,∴FH=1.然后分情況討論點D在y軸的正半軸上和在y軸的負半軸上,可求得m的值為3或5.【詳解】解:(1)∵拋物線經過點A(﹣2,0),點B(0,4)∴,解得,∴拋物線解析式為,(2),∴對稱軸為直線x=1,過點P作PG⊥y軸,垂足為G,∵∠PBO=∠BAO,∴tan∠PBO=tan∠BAO,∴,∴,∴,,∴P(1,),(3)設新拋物線的表達式為則,,DE=2過點F作FH⊥y軸,垂足為H,∵DE∥FH,EO=2OF∴,∴FH=1.點D在y軸的正半軸上,則,∴,∴,∴m=3,點D在y軸的負半軸上,則,∴,∴,∴m=5,∴綜上所述m的值為3或5.【點睛】本題是二次函數和相似三角形的綜合題目,整體難度不大,但是非常巧妙,學會靈活運用是關鍵.23、(2)y=x2﹣4x+3;(2)①2<x3<4,②m的值為或2.【解析】

(2)由直線y=﹣x+3分別與x軸、y交于點B、C求得點B、C的坐標,再代入y=x2+bx+c求得b、c的值,即可求得拋物線的解析式;(2)①先求得拋物線的頂點坐標為D(2,﹣2),當直線l2經過點D時求得m=﹣2;當直線l2經過點C時求得m=3,再由x2>x2>2,可得﹣2<y3<3,即可﹣2<﹣x3+3<3,所以2<x3<4;②分當直線l2在x軸的下方時,點Q在點P、N之間和當直線l2在x軸的上方時,點N在點P、Q之間兩種情況求m的值即可.【詳解】(2)在y=﹣x+3中,令x=2,則y=3;令y=2,則x=3;得B(3,2),C(2,3),將點B(3,2),C(2,3)的坐標代入y=x2+bx+c得:,解得∴y=x2﹣4x+3;(2)∵直線l2平行于x軸,∴y2=y2=y3=m,①如圖①,y=x2﹣4x+3=(x﹣2)2﹣2,∴頂點為D(2,﹣2),當直線l2經過點D時,m=﹣2;當直線l2經過點C時,m=3∵x2>x2>2,∴﹣2<y3<3,即﹣2<﹣x3+3<3,得2<x3<4,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論