山東省濰坊市壽光市、安丘市市級名校2024年初中數學畢業考試模擬沖刺卷含解析_第1頁
山東省濰坊市壽光市、安丘市市級名校2024年初中數學畢業考試模擬沖刺卷含解析_第2頁
山東省濰坊市壽光市、安丘市市級名校2024年初中數學畢業考試模擬沖刺卷含解析_第3頁
山東省濰坊市壽光市、安丘市市級名校2024年初中數學畢業考試模擬沖刺卷含解析_第4頁
山東省濰坊市壽光市、安丘市市級名校2024年初中數學畢業考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省濰坊市壽光市、安丘市市級名校2024年初中數學畢業考試模擬沖刺卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC中點,PE,PF分別交AB,AC于點E,F,給出下列四個結論:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四邊形AEPF,上述結論正確的有()A.1個 B.2個 C.3個 D.4個2.把一枚六個面編號分別為1,2,3,4,5,6的質地均勻的正方體骰子先后投擲2次,若兩個正面朝上的編號分別為m,n,則二次函數y=xA.512B.49C.173.計算﹣2+3的結果是()A.1 B.﹣1 C.﹣5 D.﹣64.如圖,若a∥b,∠1=60°,則∠2的度數為()A.40° B.60° C.120° D.150°5.如圖,某廠生產一種扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用紙糊的,若扇子完全打開攤平時紙面面積為πcm2,則扇形圓心角的度數為()A.120° B.140° C.150° D.160°6.計算(1-)÷的結果是()A.x-1 B. C. D.7.若一個正多邊形的每個內角為150°,則這個正多邊形的邊數是()A.12 B.11 C.10 D.98.下列運算結果正確的是()A.3a2-a2=2 B.a2·a3=a6 C.(-a2)3=-a6 D.a2÷a2=a9.運用圖形變化的方法研究下列問題:如圖,AB是⊙O的直徑,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.則圖中陰影部分的面積是(

)A. B. C. D.10.對于反比例函數,下列說法不正確的是()A.點(﹣2,﹣1)在它的圖象上 B.它的圖象在第一、三象限C.當x>0時,y隨x的增大而增大 D.當x<0時,y隨x的增大而減小二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在平行四邊形紙片上做隨機扎針實驗,則針頭扎在陰影區域的概率為__________.12.如圖,在平面直角坐標系xOy中,△ABC可以看作是△DEF經過若干次圖形的變化(平移、旋轉、軸對稱)得到的,寫出一種由△DEF得到△ABC的過程____.13.如果關于x的一元二次方程有兩個不相等的實數根,那么的取值范圍是__________.14.已知扇形的弧長為,圓心角為45°,則扇形半徑為_____.15.在直角三角形ABC中,∠C=90°,已知sinA=3516.如圖,從一個直徑為1m的圓形鐵片中剪出一個圓心角為90°的扇形,再將剪下的扇形圍成一個圓錐,則圓錐的底面半徑為_____m.三、解答題(共8題,共72分)17.(8分)已知P是的直徑BA延長線上的一個動點,∠P的另一邊交于點C、D,兩點位于AB的上方,=6,OP=m,,如圖所示.另一個半徑為6的經過點C、D,圓心距.(1)當m=6時,求線段CD的長;(2)設圓心O1在直線上方,試用n的代數式表示m;(3)△POO1在點P的運動過程中,是否能成為以OO1為腰的等腰三角形,如果能,試求出此時n的值;如果不能,請說明理由.18.(8分)如圖,在△ABC中,AD、AE分別為△ABC的中線和角平分線.過點C作CH⊥AE于點H,并延長交AB于點F,連接DH,求證:DH=BF.19.(8分)如圖,已知∠AOB=45°,AB⊥OB,OB=1.(1)利用尺規作圖:過點M作直線MN∥OB交AB于點N(不寫作法,保留作圖痕跡);(1)若M為AO的中點,求AM的長.20.(8分)今年義烏市準備爭創全國衛生城市,某小區積極響應,決定在小區內安裝垃圾分類的溫馨提示牌和垃圾箱,若購買2個溫馨提示牌和3個垃圾箱共需550元,且垃圾箱的單價是溫馨提示牌單價的3倍.(1)求溫馨提示牌和垃圾箱的單價各是多少元?(2)該小區至少需要安放48個垃圾箱,如果購買溫馨提示牌和垃圾箱共100個,且費用不超過10000元,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少元?21.(8分)投資1萬元圍一個矩形菜園(如圖),其中一邊靠墻,另外三邊選用不同材料建造.墻長24m,平行于墻的邊的費用為200元/m,垂直于墻的邊的費用為150元/m,設平行于墻的邊長為xm設垂直于墻的一邊長為ym,直接寫出y與x之間的函數關系式;若菜園面積為384m2,求x的值;求菜園的最大面積.22.(10分)先化簡,再求值÷(x﹣),其中x=.23.(12分)某商場將進價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉”政策的實施,商場決定采取適當的降價措施.調查表明:這種冰箱的售價每降低50元,平均每天就能多售出4臺.商場要想在這種冰箱銷售中每天盈利4800元,同時又要使百姓得到實惠,每臺冰箱應降價多少元?24.先化簡,再求值:,其中x滿足x2-2x-2=0.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

利用“角邊角”證明△APE和△CPF全等,根據全等三角形的可得AE=CF,再根據等腰直角三角形的定義得到△EFP是等腰直角三角形,根據全等三角形的面積相等可得△APE的面積等于△CPF的面積相等,然后求出四邊形AEPF的面積等于△ABC的面積的一半.【詳解】∵AB=AC,∠BAC=90°,點P是BC的中點,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴AE=CF,故①②正確;∵△AEP≌△CFP,同理可證△APF≌△BPE,∴△EFP是等腰直角三角形,故③錯誤;∵△APE≌△CPF,∴S△APE=S△CPF,∴四邊形AEPF=S△AEP+S△APF=S△CPF+S△BPE=S△ABC.故④正確,故選C.【點睛】本題考查了全等三角形的判定與性質,等腰直角三角形的判定與性質,根據同角的余角相等求出∠APE=∠CPF,從而得到△APE和△CPF全等是解題的關鍵,也是本題的突破點.2、C【解析】分析:本題可先列出出現的點數的情況,因為二次圖象開口向上,要使圖象與x軸有兩個不同的交點,則最低點要小于0,即4n-m2<0,再把m、n的值一一代入檢驗,看是否滿足.最后把滿足的個數除以擲骰子可能出現的點數的總個數即可.解答:解:擲骰子有6×6=36種情況.根據題意有:4n-m2<0,因此滿足的點有:n=1,m=3,4,5,6,n=2,m=3,4,5,6,n=3,m=4,5,6,n=4,m=5,6,n=5,m=5,6,n=6,m=5,6,共有17種,故概率為:17÷36=1736故選C.點評:本題考查的是概率的公式和二次函數的圖象問題.要注意畫出圖形再進行判斷,找出滿足條件的點.3、A【解析】

根據異號兩數相加的法則進行計算即可.【詳解】解:因為-2,3異號,且|-2|<|3|,所以-2+3=1.故選A.【點睛】本題主要考查了異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值.4、C【解析】如圖:∵∠1=60°,∴∠3=∠1=60°,又∵a∥b,∴∠2+∠3=180°,∴∠2=120°,故選C.點睛:本題考查了平行線的性質,對頂角相等的性質,熟記性質是解題的關鍵.平行線的性質定理:兩直線平行,同位角相等,內錯角相等,同旁內角互補,兩條平行線之間的距離處處相等.5、C【解析】

根據扇形的面積公式列方程即可得到結論.【詳解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,設扇形圓心角的度數為α,∵紙面面積為πcm2,∴,∴α=150°,故選:C.【點睛】本題考了扇形面積的計算的應用,解題的關鍵是熟練掌握扇形面積計算公式:扇形的面積=.6、B【解析】

先計算括號內分式的加法、將除式分子因式分解,再將除法轉化為乘法,約分即可得.【詳解】解:原式=(-)÷=?=,故選B.【點睛】本題主要考查分式的混合運算,解題的關鍵是掌握分式混合運算順序和運算法則.7、A【解析】

根據正多邊形的外角與它對應的內角互補,得到這個正多邊形的每個外角=180°﹣150°=30°,再根據多邊形外角和為360度即可求出邊數.【詳解】∵一個正多邊形的每個內角為150°,∴這個正多邊形的每個外角=180°﹣150°=30°,∴這個正多邊形的邊數==1.故選:A.【點睛】本題考查了正多邊形的外角與它對應的內角互補的性質;也考查了多邊形外角和為360度以及正多邊形的性質.8、C【解析】選項A,3a2-a2=2a2;選項B,a2·a3=a5;選項C,(-a2)3=-a6;選項D,a2÷a2=1.正確的只有選項C,故選C.9、A【解析】【分析】作直徑CG,連接OD、OE、OF、DG,則根據圓周角定理求得DG的長,證明DG=EF,則S扇形ODG=S扇形OEF,然后根據三角形的面積公式證明S△OCD=S△ACD,S△OEF=S△AEF,則S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓,即可求解.【詳解】作直徑CG,連接OD、OE、OF、DG.∵CG是圓的直徑,∴∠CDG=90°,則DG==8,又∵EF=8,∴DG=EF,∴,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓=π×52=,故選A.【點睛】本題考查扇形面積的計算,圓周角定理.本題中找出兩個陰影部分面積之間的聯系是解題的關鍵.10、C【解析】

由題意分析可知,一個點在函數圖像上則代入該點必定滿足該函數解析式,點(-2,-1)代入可得,x=-2時,y=-1,所以該點在函數圖象上,A正確;因為2大于0所以該函數圖象在第一,三象限,所以B正確;C中,因為2大于0,所以該函數在x>0時,y隨x的增大而減小,所以C錯誤;D中,當x<0時,y隨x的增大而減小,正確,故選C.考點:反比例函數【點睛】本題屬于對反比例函數的基本性質以及反比例函數的在各個象限單調性的變化二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

先根據平行四邊形的性質求出對角線所分的四個三角形面積相等,再求出概率即可.【詳解】解:∵四邊形是平行四邊形,∴對角線把平行四邊形分成面積相等的四部分,觀察發現:圖中陰影部分面積=S四邊形,∴針頭扎在陰影區域內的概率為;故答案為:.【點睛】此題主要考查了幾何概率,以及平行四邊形的性質,用到的知識點為:概率=相應的面積與總面積之比.12、先以點O為旋轉中心,逆時針旋轉90°,再將得到的三角形沿x軸翻折.【解析】

根據旋轉的性質,平移的性質即可得到由△DEF得到△ABC的過程.【詳解】由題可得,由△DEF得到△ABC的過程為:先以點O為旋轉中心,逆時針旋轉90°,再將得到的三角形沿x軸翻折.(答案不唯一)故答案為:先以點O為旋轉中心,逆時針旋轉90°,再將得到的三角形沿x軸翻折.【點睛】本題考查了坐標與圖形變化﹣旋轉,平移,對稱,解題時需要注意:平移的距離等于對應點連線的長度,對稱軸為對應點連線的垂直平分線,旋轉角為對應點與旋轉中心連線的夾角的大小.13、k>-且k≠1【解析】由題意知,k≠1,方程有兩個不相等的實數根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.又∵方程是一元二次方程,∴k≠1,∴k>-1/4且k≠1.14、1【解析】

根據弧長公式l=代入求解即可.【詳解】解:∵,∴.故答案為1.【點睛】本題考查了弧長的計算,解答本題的關鍵是掌握弧長公式:l=.15、35【解析】試題分析:解答此題要利用互余角的三角函數間的關系:sin(90°-α)=cosα,cos(90°-α)=sinα.試題解析:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴cosB=sinA=35考點:互余兩角三角函數的關系.16、m.【解析】

利用勾股定理易得扇形的半徑,那么就能求得扇形的弧長,除以2π即為圓錐的底面半徑.【詳解】解:易得扇形的圓心角所對的弦是直徑,∴扇形的半徑為:m,∴扇形的弧長為:=πm,∴圓錐的底面半徑為:π÷2π=m.【點睛】本題考查:90度的圓周角所對的弦是直徑;圓錐的側面展開圖的弧長等于圓錐的底面周長,解題關鍵是弧長公式.三、解答題(共8題,共72分)17、(1)CD=;(2)m=;(3)n的值為或【解析】分析:(1)過點作⊥,垂足為點,連接.解Rt△,得到的長.由勾股定理得的長,再由垂徑定理即可得到結論;(2)解Rt△,得到和Rt△中,由勾股定理即可得到結論;(3)△成為等腰三角形可分以下幾種情況討論:①當圓心、在弦異側時,分和.②當圓心、在弦同側時,同理可得結論.詳解:(1)過點作⊥,垂足為點,連接.在Rt△,∴.∵=6,∴.由勾股定理得:.∵⊥,∴.(2)在Rt△,∴.在Rt△中,.在Rt△中,.可得:,解得.(3)△成為等腰三角形可分以下幾種情況:①當圓心、在弦異側時i),即,由,解得.即圓心距等于、的半徑的和,就有、外切不合題意舍去.ii),由,解得:,即,解得.②當圓心、在弦同側時,同理可得:.∵是鈍角,∴只能是,即,解得.綜上所述:n的值為或.點睛:本題是圓的綜合題.考查了圓的有關性質和兩圓的位置關系以及解直徑三角形.解答(3)的關鍵是要分類討論.18、見解析.【解析】

先證明△AFC為等腰三角形,根據等腰三角形三線合一證明H為FC的中點,又D為BC的中點,根據中位線的性質即可證明.【詳解】∵AE為△ABC的角平分線,CH⊥AE,∴△ACF是等腰三角形,∴AF=AC,HF=CH,∵AD為△ABC的中線,∴DH是△BCF的中位線,∴DH=BF.【點睛】本題考查三角形中位線定理,等腰三角形的判定與性質.解決本題的關鍵是證明H點為FC的中點,然后利用中位線的性質解決問題.本題中要證明DH=BF,一般三角形中出現這種2倍或關系時,常用中位線的性質解決.19、(1)詳見解析;(1).【解析】

(1)以點M為頂點,作∠AMN=∠O即可;(1)由∠AOB=45°,AB⊥OB,可知△AOB為等腰為等腰直角三角形,根據勾股定理求出OA的長,即可求出AM的值.【詳解】(1)作圖如圖所示;(1)由題知△AOB為等腰Rt△AOB,且OB=1,所以,AO=OB=1又M為OA的中點,所以,AM=1=【點睛】本題考查了尺規作圖,等腰直角三角形的判定,勾股定理等知識,熟練掌握作一個角等于已知角是解(1)的關鍵,證明△AOB為等腰為等腰直角三角形是解(1)的關鍵.20、(1)溫馨提示牌和垃圾箱的單價各是50元和150元;(2)答案見解析【解析】

(1)根據“購買2個溫馨提示牌和3個垃圾箱共需550元”,建立方程求解即可得出結論;(2)根據“費用不超過10000元和至少需要安放48個垃圾箱”,建立不等式即可得出結論.【詳解】(1)設溫情提示牌的單價為x元,則垃圾箱的單價為3x元,根據題意得,2x+3×3x=550,∴x=50,經檢驗,符合題意,∴3x=150元,即:溫馨提示牌和垃圾箱的單價各是50元和150元;(2)設購買溫情提示牌y個(y為正整數),則垃圾箱為(100﹣y)個,根據題意得,意,∴∵y為正整數,∴y為50,51,52,共3中方案;有三種方案:①溫馨提示牌50個,垃圾箱50個,②溫馨提示牌51個,垃圾箱49個,③溫馨提示牌52個,垃圾箱48個,設總費用為w元W=50y+150(100﹣y)=﹣100y+15000,∵k=-100,∴w隨y的增大而減小∴當y=52時,所需資金最少,最少是9800元.【點睛】此題主要考查了一元一次不等式組,一元一次方程的應用,正確找出相等關系是解本題的關鍵.21、(1)見詳解;(2)x=18;(3)416m2.【解析】

(1)根據“垂直于墻的長度=可得函數解析式;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論