山東省日照嵐山區五校聯考2024屆中考數學押題卷含解析_第1頁
山東省日照嵐山區五校聯考2024屆中考數學押題卷含解析_第2頁
山東省日照嵐山區五校聯考2024屆中考數學押題卷含解析_第3頁
山東省日照嵐山區五校聯考2024屆中考數學押題卷含解析_第4頁
山東省日照嵐山區五校聯考2024屆中考數學押題卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省日照嵐山區五校聯考2024屆中考數學押題卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.某公司第4月份投入1000萬元科研經費,計劃6月份投入科研經費比4月多500萬元.設該公司第5、6個月投放科研經費的月平均增長率為x,則所列方程正確的為()A.1000(1+x)2=1000+500B.1000(1+x)2=500C.500(1+x)2=1000D.1000(1+2x)=1000+5002.下列說法:①-102②數軸上的點與實數成一一對應關系;③﹣2是16的平方根;④任何實數不是有理數就是無理數;⑤兩個無理數的和還是無理數;⑥無理數都是無限小數,其中正確的個數有()A.2個 B.3個 C.4個 D.5個3.如圖,在△ABC中,∠C=90°,M是AB的中點,動點P從點A出發,沿AC方向勻速運動到終點C,動點Q從點C出發,沿CB方向勻速運動到終點B.已知P,Q兩點同時出發,并同時到達終點.連結MP,MQ,PQ.在整個運動過程中,△MPQ的面積大小變化情況是()A.一直增大 B.一直減小 C.先減小后增大 D.先增大后減小4.將拋物線向右平移1個單位長度,再向下平移3個單位長度,所得的拋物線的函數表達式為()A. B.C. D.5.在半徑等于5cm的圓內有長為cm的弦,則此弦所對的圓周角為A.60° B.120° C.60°或120° D.30°或120°6.下列命題中,真命題是()A.如果第一個圓上的點都在第二個圓的外部,那么這兩個圓外離B.如果一個點即在第一個圓上,又在第二個圓上,那么這兩個圓外切C.如果一條直線上的點到圓心的距離等于半徑長,那么這條直線與這個圓相切D.如果一條直線上的點都在一個圓的外部,那么這條直線與這個圓相離7.某種商品的進價為800元,出售時標價為1200元,后來由于該商品積壓,商店準備打折銷售,但要保證利潤率不低于5%,則至多可打()A.6折 B.7折C.8折 D.9折8.如圖,正方形ABCD的邊長是3,BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結論:①AQ⊥DP;②OA2=OE?OP;③S△AOD=S四邊形OECF;④當BP=1時,tan∠OAE=,其中正確結論的個數是(

)A.1 B.2 C.3 D.49.如圖,在平面直角坐標系xOy中,等腰梯形ABCD的頂點坐標分別為A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A為對稱中心作點P(0,2)的對稱點P1,以B為對稱中心作點P1的對稱點P2,以C為對稱中心作點P2的對稱點P3,以D為對稱中心作點P3的對稱點P4,…,重復操作依次得到點P1,P2,…,則點P2010的坐標是()A.(2010,2) B.(2010,﹣2) C.(2012,﹣2) D.(0,2)10.已知點A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函數y=的圖象上,則y1、y2、y3的大小關系是()A.y1<y2<y3 B.y3<y2<y1 C.y2<y1<y3 D.y3<y1<y2二、填空題(共7小題,每小題3分,滿分21分)11.如圖所示,邊長為1的小正方形構成的網格中,半徑為1的⊙O的圓心O在格點上,則∠AED的正切值等于__________.12.在2018年幫助居民累計節約用水305000噸,將數字305000用科學記數法表示為_____.13.如果當a≠0,b≠0,且a≠b時,將直線y=ax+b和直線y=bx+a稱為一對“對偶直線”,把它們的公共點稱為該對“對偶直線”的“對偶點”,那么請寫出“對偶點”為(1,4)的一對“對偶直線”:______.14.已知扇形的弧長為,圓心角為45°,則扇形半徑為_____.15.若關于x的函數與x軸僅有一個公共點,則實數k的值為.16.現在網購越來越多地成為人們的一種消費方式,天貓和淘寶的支付交易額突破67000000000元,將67000000000元用科學記數法表示為_____.17.如圖,在四邊形ABCD中,AC、BD是對角線,AC=AD,BC>AB,AB∥CD,AB=4,BD=213,tan∠BAC=33,則線段BC的長是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知AB為⊙O的直徑,AC是⊙O的弦,D是弧BC的中點,過點D作⊙O的切線,分別交AC、AB的延長線于點E和點F,連接CD、BD.(1)求證:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的長.19.(5分)如圖,某大樓的頂部豎有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的傾斜角∠BAH=30°,AB=20米,AB=30米.(1)求點B距水平面AE的高度BH;(2)求廣告牌CD的高度.20.(8分)先化簡,再求值:(1+)÷,其中x=+1.21.(10分)給定關于x的二次函數y=kx2﹣4kx+3(k≠0),當該二次函數與x軸只有一個公共點時,求k的值;當該二次函數與x軸有2個公共點時,設這兩個公共點為A、B,已知AB=2,求k的值;由于k的變化,該二次函數的圖象性質也隨之變化,但也有不會變化的性質,某數學學習小組在探究時得出以下結論:①與y軸的交點不變;②對稱軸不變;③一定經過兩個定點;請判斷以上結論是否正確,并說明理由.22.(10分)某中學開學初到商場購買A、B兩種品牌的足球,購買A種品牌的足球20個,B種品牌的足球30個,共花費4600元,已知購買4個B種品牌的足球與購買5個A種品牌的足球費用相同.(1)求購買一個A種品牌、一個B種品牌的足球各需多少元.(2)學校為了響應“足球進校園”的號召,決定再次購進A、B兩種品牌足球共42個,正好趕上商場對商品價格進行調整,A品牌足球售價比第一次購買時提高5元,B品牌足球按第一次購買時售價的9折出售,如果學校此次購買A、B兩種品牌足球的總費用不超過第一次花費的80%,且保證這次購買的B種品牌足球不少于20個,則這次學校有哪幾種購買方案?(3)請你求出學校在第二次購買活動中最多需要多少資金?23.(12分)校車安全是近幾年社會關注的重大問題,安全隱患主要是超速和超載.某中學數學活動小組設計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道上確定點D,使CD與垂直,測得CD的長等于21米,在上點D的同側取點A、B,使∠CAD=30,∠CBD=60.(1)求AB的長(精確到0.1米,參考數據:);(2)已知本路段對校車限速為40千米/小時,若測得某輛校車從A到B用時2秒,這輛校車是否超速?說明理由.24.(14分)在大課間活動中,體育老師隨機抽取了七年級甲、乙兩班部分女學生進行仰臥起坐的測試,并對成績進行統計分析,繪制了頻數分布表和統計圖,請你根據圖表中的信息完成下列問題:頻數分布表中a=,b=,并將統計圖補充完整;如果該校七年級共有女生180人,估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有多少人?已知第一組中只有一個甲班學生,第四組中只有一個乙班學生,老師隨機從這兩個組中各選一名學生談心得體會,則所選兩人正好都是甲班學生的概率是多少?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

設該公司第5、6個月投放科研經費的月平均增長率為x,5月份投放科研經費為1000(1+x),6月份投放科研經費為1000(1+x)(1+x),即可得答案.【詳解】設該公司第5、6個月投放科研經費的月平均增長率為x,則6月份投放科研經費1000(1+x)2=1000+500,故選A.【點睛】考查一元二次方程的應用,求平均變化率的方法為:若設變化前的量為a,變化后的量為b,平均變化率為x,則經過兩次變化后的數量關系為a(1±x)2=b.2、C【解析】

根據平方根,數軸,有理數的分類逐一分析即可.【詳解】①∵-102=10,∴②數軸上的點與實數成一一對應關系,故說法正確;③∵16=4,故-2是16的平方根,故說法正確;④任何實數不是有理數就是無理數,故說法正確;⑤兩個無理數的和還是無理數,如2和-2⑥無理數都是無限小數,故說法正確;故正確的是②③④⑥共4個;故選C.【點睛】本題考查了有理數的分類,數軸及平方根的概念,有理數都可以化為小數,其中整數可以看作小數點后面是零的小數,分數可以化為有限小數或無限循環小數;無理數是無限不循環小數,其中有開方開不盡的數,如2,3、C【解析】如圖所示,連接CM,∵M是AB的中點,∴S△ACM=S△BCM=S△ABC,開始時,S△MPQ=S△ACM=S△ABC;由于P,Q兩點同時出發,并同時到達終點,從而點P到達AC的中點時,點Q也到達BC的中點,此時,S△MPQ=S△ABC;結束時,S△MPQ=S△BCM=S△ABC.△MPQ的面積大小變化情況是:先減小后增大.故選C.4、A【解析】

根據二次函數的平移規律即可得出.【詳解】解:向右平移1個單位長度,再向下平移3個單位長度,所得的拋物線的函數表達式為故答案為:A.【點睛】本題考查了二次函數的平移,解題的關鍵是熟知二次函數的平移規律.5、C【解析】

根據題意畫出相應的圖形,由OD⊥AB,利用垂徑定理得到D為AB的中點,由AB的長求出AD與BD的長,且得出OD為角平分線,在Rt△AOD中,利用銳角三角函數定義及特殊角的三角函數值求出∠AOD的度數,進而確定出∠AOB的度數,利用同弧所對的圓心角等于所對圓周角的2倍,即可求出弦AB所對圓周角的度數.【詳解】如圖所示,∵OD⊥AB,∴D為AB的中點,即AD=BD=,在Rt△AOD中,OA=5,AD=,∴sin∠AOD=,又∵∠AOD為銳角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=∠AOB=60°,又∵圓內接四邊形AEBC對角互補,∴∠AEB=120°,則此弦所對的圓周角為60°或120°.故選C.【點睛】此題考查了垂徑定理,圓周角定理,特殊角的三角函數值,以及銳角三角函數定義,熟練掌握垂徑定理是解本題的關鍵.6、D【解析】

根據兩圓的位置關系、直線和圓的位置關系判斷即可.【詳解】A.如果第一個圓上的點都在第二個圓的外部,那么這兩個圓外離或內含,A是假命題;B.如果一個點即在第一個圓上,又在第二個圓上,那么這兩個圓外切或內切或相交,B是假命題;C.如果一條直線上的點到圓心的距離等于半徑長,那么這條直線與這個圓相切或相交,C是假命題;D.如果一條直線上的點都在一個圓的外部,那么這條直線與這個圓相離,D是真命題;故選:D.【點睛】本題考查了兩圓的位置關系:設兩圓半徑分別為R、r,兩圓圓心距為d,則當d>R+r時兩圓外離;當d=R+r時兩圓外切;當R-r<d<R+r(R≥r)時兩圓相交;當d=R-r(R>r)時兩圓內切;當0≤d<R-r(R>r)時兩圓內含.7、B【解析】

設可打x折,則有1200×-800≥800×5%,解得x≥1.即最多打1折.故選B.【點睛】本題考查的是一元一次不等式的應用,解此類題目時注意利潤和折數,計算折數時注意要除以2.解答本題的關鍵是讀懂題意,求出打折之后的利潤,根據利潤率不低于5%,列不等式求解.8、C【解析】∵四邊形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP與△ABQ中,,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正確;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD?OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE?OP;故②錯誤;在△CQF與△BPE中,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在△ADF與△DCE中,,∴△ADF≌△DCE,∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四邊形OECF;故③正確;∵BP=1,AB=3,∴AP=4,∵△AOP∽△DAP,∴,∴BE=,∴QE=,∵△QOE∽△PAD,∴,∴QO=,OE=,∴AO=5﹣QO=,∴tan∠OAE==,故④正確,故選C.點睛:本題考查了相似三角形的判定和性質,全等三角形的判定和性質,正方形的性質,三角函數的定義,熟練掌握全等三角形的判定和性質是解題的關鍵.9、B【解析】分析:根據題意,以A為對稱中心作點P(0,1)的對稱點P1,即A是PP1的中點,結合中點坐標公式即可求得點P1的坐標;同理可求得其它各點的坐標,分析可得規律,進而可得答案.詳解:根據題意,以A為對稱中心作點P(0,1)的對稱點P1,即A是PP1的中點,又∵A的坐標是(1,1),結合中點坐標公式可得P1的坐標是(1,0);同理P1的坐標是(1,﹣1),記P1(a1,b1),其中a1=1,b1=﹣1.根據對稱關系,依次可以求得:P3(﹣4﹣a1,﹣1﹣b1),P4(1+a1,4+b1),P5(﹣a1,﹣1﹣b1),P6(4+a1,b1),令P6(a6,b1),同樣可以求得,點P10的坐標為(4+a6,b1),即P10(4×1+a1,b1),∵1010=4×501+1,∴點P1010的坐標是(1010,﹣1),故選:B.點睛:本題考查了對稱的性質,坐標與圖形的變化---旋轉,根據條件求出前邊幾個點的坐標,得到規律是解題關鍵.10、B【解析】

分別把各點代入反比例函數的解析式,求出y1,y2,y3的值,再比較出其大小即可.【詳解】∵點A(1,y1),B(2,y2),C(﹣3,y3)都在反比例函數y=的圖象上,∴y1==6,y2==3,y3==-2,∵﹣2<3<6,∴y3<y2<y1,故選B.【點睛】本題考查了反比例函數圖象上點的坐標特征,反比例函數值的大小比較,熟練掌握反比例函數圖象上的點的坐標滿足函數的解析式是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

根據同弧或等弧所對的圓周角相等來求解.【詳解】解:∵∠E=∠ABD,∴tan∠AED=tan∠ABD==.故選D.【點睛】本題利用了圓周角定理(同弧或等弧所對的圓周角相等)和正切的概念求解.12、3.05×105【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.【詳解】305000=3.05×故答案為:3.05×10【點睛】本題考查的知識點是科學記數法—表示較大的數,解題關鍵是熟記科學計數法的表示方法.13、【解析】

把(1,4)代入兩函數表達式可得:a+b=4,再根據“對偶直線”的定義,即可確定a、b的值.【詳解】把(1,4)代入得:a+b=4又因為,,且,所以當a=1是b=3所以“對偶點”為(1,4)的一對“對偶直線”可以是:故答案為【點睛】此題為新定義題型,關鍵是理解新定義,并按照新定義的要求解答.14、1【解析】

根據弧長公式l=代入求解即可.【詳解】解:∵,∴.故答案為1.【點睛】本題考查了弧長的計算,解答本題的關鍵是掌握弧長公式:l=.15、0或-1。【解析】由于沒有交待是二次函數,故應分兩種情況:當k=0時,函數是一次函數,與x軸僅有一個公共點。當k≠0時,函數是二次函數,若函數與x軸僅有一個公共點,則有兩個相等的實數根,即。綜上所述,若關于x的函數與x軸僅有一個公共點,則實數k的值為0或-1。16、【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】67000000000的小數點向左移動10位得到6.7,所以67000000000用科學記數法表示為,故答案為:.【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.17、6【解析】

作DE⊥AB,交BA的延長線于E,作CF⊥AB,可得DE=CF,且AC=AD,可證Rt△ADE≌Rt△AFC,可得AE=AF,∠DAE=∠BAC,根據tan∠BAC=∠DAE=DEAE=33【詳解】如圖:作DE⊥AB,交BA的延長線于E,作CF⊥AB,∵AB∥CD,DE⊥AB⊥,CF⊥AB∴CF=DE,且AC=AD∴Rt△ADE≌Rt△AFC∴AE=AF,∠DAE=∠BAC∵tan∠BAC=33∴tan∠DAE=33∴設AE=a,DE=33a在Rt△BDE中,BD2=DE2+BE2∴52=(4+a)2+27a2解得a1=1,a2=-97∴AE=1=AF,DE=33=CF∴BF=AB-AF=3在Rt△BFC中,BC=BF2【點睛】本題是解直角三角形問題,恰當地構建輔助線是本題的關鍵,利用三角形全等證明邊相等,并借助同角的三角函數值求線段的長,與勾股定理相結合,依次求出各邊的長即可.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)1【解析】

(1)連接AD,如圖,利用圓周角定理得∠ADB=90°,利用切線的性質得OD⊥DF,則根據等角的余角相等得到∠BDF=∠ODA,所以∠OAD=∠BDF,然后證明∠COD=∠OAD得到∠CAB=2∠BDF;

(2)連接BC交OD于H,如圖,利用垂徑定理得到OD⊥BC,則CH=BH,于是可判斷OH為△ABC的中位線,所以OH=1.5,則HD=1,然后證明四邊形DHCE為矩形得到CE=DH=1.【詳解】(1)證明:連接AD,如圖,∵AB為⊙O的直徑,∴∠ADB=90°,∵EF為切線,∴OD⊥DF,∵∠BDF+∠ODB=90°,∠ODA+∠ODB=90°,∴∠BDF=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD=∠BDF,∵D是弧BC的中點,∴∠COD=∠OAD,∴∠CAB=2∠BDF;(2)解:連接BC交OD于H,如圖,∵D是弧BC的中點,∴OD⊥BC,∴CH=BH,∴OH為△ABC的中位線,∴,∴HD=2.5-1.5=1,∵AB為⊙O的直徑,∴∠ACB=90°,∴四邊形DHCE為矩形,∴CE=DH=1.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.若出現圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.簡記作:見切點,連半徑,見垂直.也考查了圓周角定理.19、(1)BH為10米;(2)宣傳牌CD高約(40﹣20)米【解析】

(1)過B作DE的垂線,設垂足為G.分別在Rt△ABH中,通過解直角三角形求出BH、AH;

(2)在△ADE解直角三角形求出DE的長,進而可求出EH即BG的長,在Rt△CBG中,∠CBG=45°,則CG=BG,由此可求出CG的長然后根據CD=CG+GE-DE即可求出宣傳牌的高度.【詳解】(1)過B作BH⊥AE于H,Rt△ABH中,∠BAH=30°,∴BH=AB=×20=10(米),即點B距水平面AE的高度BH為10米;(2)過B作BG⊥DE于G,∵BH⊥HE,GE⊥HE,BG⊥DE,∴四邊形BHEG是矩形.∵由(1)得:BH=10,AH=10,∴BG=AH+AE=(10+30)米,Rt△BGC中,∠CBG=45°,∴CG=BG=(10+30)米,∴CE=CG+GE=CG+BH=10+30+10=10+40(米),在Rt△AED中,=tan∠DAE=tan60°=,DE=AE=30∴CD=CE﹣DE=10+40﹣30=40﹣20.答:宣傳牌CD高約(40﹣20)米.【點睛】本題考查解直角三角形的應用-仰角俯角問題和解直角三角形的應用-坡度坡角問題,解題的關鍵是掌握解直角三角形的應用-仰角俯角問題和解直角三角形的應用-坡度坡角問題的基本方法.20、,1+【解析】

運用公式化簡,再代入求值.【詳解】原式===,當x=+1時,原式=.【點睛】考查分式的化簡求值、整式的化簡求值,解答本題的關鍵是明確它們各自的計算方法.21、(1)(2)1(3)①②③【解析】

(1)由拋物線與x軸只有一個交點,可知△=0;(2)由拋物線與x軸有兩個交點且AB=2,可知A、B坐標,代入解析式,可得k值;(3)通過解析式求出對稱軸,與y軸交點,并根據系數的關系得出判斷.【詳解】(1)∵二次函數y=kx2﹣4kx+3與x軸只有一個公共點,∴關于x的方程kx2﹣4kx+3=0有兩個相等的實數根,∴△=(﹣4k)2﹣4×3k=16k2﹣12k=0,解得:k1=0,k2=,k≠0,∴k=;(2)∵AB=2,拋物線對稱軸為x=2,∴A、B點坐標為(1,0),(3,0),將(1,0)代入解析式,可得k=1,(3)①∵當x=0時,y=3,∴二次函數圖象與y軸的交點為(0,3),①正確;②∵拋物線的對稱軸為x=2,∴拋物線的對稱軸不變,②正確;③二次函數y=kx2﹣4kx+3=k(x2﹣4x)+3,將其看成y關于k的一次函數,令k的系數為0,即x2﹣4x=0,解得:x1=0,x2=4,∴拋物線一定經過兩個定點(0,3)和(4,3),③正確.綜上可知:正確的結論有①②③.【點睛】本題考查了二次函數的性質,與x、y軸的交點問題,對稱軸問題,以及系數與圖象的關系問題,是一道很好的綜合問題.22、(1)購買一個A種品牌的足球需要50元,購買一個B種品牌的足球需要80元;(2)有三種方案,具體見解析;(3)3150元

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論