山東省鄆城第一中學(xué)2022年中考數(shù)學(xué)最后一模試卷含解析_第1頁
山東省鄆城第一中學(xué)2022年中考數(shù)學(xué)最后一模試卷含解析_第2頁
山東省鄆城第一中學(xué)2022年中考數(shù)學(xué)最后一模試卷含解析_第3頁
山東省鄆城第一中學(xué)2022年中考數(shù)學(xué)最后一模試卷含解析_第4頁
山東省鄆城第一中學(xué)2022年中考數(shù)學(xué)最后一模試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

山東省鄆城第一中學(xué)2022年中考數(shù)學(xué)最后一模試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在四邊形ABCD中,如果∠ADC=∠BAC,那么下列條件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分線 C.AC2=BC?CD D.2.如圖,AB為⊙O的直徑,C為⊙O上的一動(dòng)點(diǎn)(不與A、B重合),CD⊥AB于D,∠OCD的平分線交⊙O于P,則當(dāng)C在⊙O上運(yùn)動(dòng)時(shí),點(diǎn)P的位置()

A.隨點(diǎn)C的運(yùn)動(dòng)而變化B.不變C.在使PA=OA的劣弧上D.無法確定3.已知一次函數(shù)y=kx+b的圖象如圖,那么正比例函數(shù)y=kx和反比例函數(shù)y=在同一坐標(biāo)系中的圖象的形狀大致是()A. B.C. D.4.把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊地放在一個(gè)底面為長方形(長為寬為)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示.則圖②中兩塊陰影部分周長和是()A. B. C. D.5.如圖,直線AB與?MNPQ的四邊所在直線分別交于A、B、C、D,則圖中的相似三角形有()A.4對B.5對C.6對D.7對6.已知y關(guān)于x的函數(shù)圖象如圖所示,則當(dāng)y<0時(shí),自變量x的取值范圍是()A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<27.某中學(xué)籃球隊(duì)12名隊(duì)員的年齡如下表:年齡:(歲)13141516人數(shù)1542關(guān)于這12名隊(duì)員的年齡,下列說法錯(cuò)誤的是()A.眾數(shù)是14歲 B.極差是3歲 C.中位數(shù)是14.5歲 D.平均數(shù)是14.8歲8.若函數(shù)的圖象在其象限內(nèi)y的值隨x值的增大而增大,則m的取值范圍是()A.m>﹣2 B.m<﹣2C.m>2 D.m<29.下列4個(gè)點(diǎn),不在反比例函數(shù)圖象上的是()A.(2,-3) B.(-3,2) C.(3,-2) D.(3,2)10.二次函數(shù)y=ax2+c的圖象如圖所示,正比例函數(shù)y=ax與反比例函數(shù)y=在同一坐標(biāo)系中的圖象可能是()A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.已知,在同一平面內(nèi),∠ABC=50°,AD∥BC,∠BAD的平分線交直線BC于點(diǎn)E,那么∠AEB的度數(shù)為__________.12.如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點(diǎn)E、F分別在BC和CD上,下列結(jié)論:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.其中正確的序號是(把你認(rèn)為正確的都填上).13.口袋中裝有4個(gè)小球,其中紅球3個(gè),黃球1個(gè),從中隨機(jī)摸出兩球,都是紅球的概率為_________.14.分解因式______.15.計(jì)算:的結(jié)果為_____.16.已知方程x2﹣5x+2=0的兩個(gè)解分別為x1、x2,則x1+x2﹣x1?x2的值為______.三、解答題(共8題,共72分)17.(8分)如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點(diǎn)C落在斜邊AB上某一點(diǎn)D處,折痕為EF(點(diǎn)E、F分別在邊AC、BC上)若△CEF與△ABC相似.①當(dāng)AC=BC=2時(shí),AD的長為;②當(dāng)AC=3,BC=4時(shí),AD的長為;當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△ABC相似嗎?請說明理由.18.(8分)主題班會(huì)上,王老師出示了如圖所示的一幅漫畫,經(jīng)過同學(xué)們的一番熱議,達(dá)成以下四個(gè)觀點(diǎn):A.放下自我,彼此尊重;B.放下利益,彼此平衡;C.放下性格,彼此成就;D.合理競爭,合作雙贏.要求每人選取其中一個(gè)觀點(diǎn)寫出自己的感悟.根據(jù)同學(xué)們的選擇情況,小明繪制了下面兩幅不完整的圖表,請根據(jù)圖表中提供的信息,解答下列問題:觀點(diǎn)頻數(shù)頻率Aa0.2B120.24C8bD200.4(1)參加本次討論的學(xué)生共有人;表中a=,b=;(2)在扇形統(tǒng)計(jì)圖中,求D所在扇形的圓心角的度數(shù);(3)現(xiàn)準(zhǔn)備從A,B,C,D四個(gè)觀點(diǎn)中任選兩個(gè)作為演講主題,請用列表或畫樹狀圖的方法求選中觀點(diǎn)D(合理競爭,合作雙贏)的概率.19.(8分)一只不透明的袋子中裝有4個(gè)質(zhì)地、大小均相同的小球,這些小球分別標(biāo)有3,4,5,x,甲,乙兩人每次同時(shí)從袋中各隨機(jī)取出1個(gè)小球,并計(jì)算2個(gè)小球上的數(shù)字之和.記錄后將小球放回袋中攪勻,進(jìn)行重復(fù)試驗(yàn),試驗(yàn)數(shù)據(jù)如下表:摸球總次數(shù)1020306090120180240330450“和為8”出現(xiàn)的頻數(shù)210132430375882110150“和為8”出現(xiàn)的頻率0.200.500.430.400.330.310.320.340.330.33解答下列問題:如果試驗(yàn)繼續(xù)進(jìn)行下去,根據(jù)上表提供的數(shù)據(jù),出現(xiàn)和為8的頻率將穩(wěn)定在它的概率附近,估計(jì)出現(xiàn)和為8的概率是________;如果摸出的2個(gè)小球上數(shù)字之和為9的概率是,那么x的值可以為7嗎?為什么?20.(8分)如圖,正方形ABCD的邊長為4,點(diǎn)E,F(xiàn)分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點(diǎn)G,CE的延長線交DA的延長線于點(diǎn)H,連接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)線段AC,AG,AH什么關(guān)系?請說明理由;(3)設(shè)AE=m,①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數(shù)關(guān)系式;如果不變化,請求出定值.②請直接寫出使△CGH是等腰三角形的m值.21.(8分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相較于A(2,3),B(﹣3,n)兩點(diǎn).求一次函數(shù)與反比例函數(shù)的解析式;根據(jù)所給條件,請直接寫出不等式kx+b>的解集;過點(diǎn)B作BC⊥x軸,垂足為C,求S△ABC.22.(10分)某初中學(xué)校組織200位同學(xué)參加義務(wù)植樹活動(dòng).甲、乙兩位同學(xué)分別調(diào)查了30位同學(xué)的植樹情況,并將收集的數(shù)據(jù)進(jìn)行了整理,繪制成統(tǒng)計(jì)表1和表2:表1:甲調(diào)查九年級30位同學(xué)植樹情況每人植樹棵數(shù)78910人數(shù)36156表2:乙調(diào)查三個(gè)年級各10位同學(xué)植樹情況每人植樹棵數(shù)678910人數(shù)363126根據(jù)以上材料回答下列問題:(1)關(guān)于于植樹棵數(shù),表1中的中位數(shù)是棵;表2中的眾數(shù)是棵;(2)你認(rèn)為同學(xué)(填“甲”或“乙”)所抽取的樣本能更好反映此次植樹活動(dòng)情況;(3)在問題(2)的基礎(chǔ)上估計(jì)本次活動(dòng)200位同學(xué)一共植樹多少棵?23.(12分)如圖,已知點(diǎn)A(﹣2,0),B(4,0),C(0,3),以D為頂點(diǎn)的拋物線y=ax2+bx+c過A,B,C三點(diǎn).(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);(2)設(shè)拋物線的對稱軸DE交線段BC于點(diǎn)E,P為第一象限內(nèi)拋物線上一點(diǎn),過點(diǎn)P作x軸的垂線,交線段BC于點(diǎn)F,若四邊形DEFP為平行四邊形,求點(diǎn)P的坐標(biāo).24.觀察下列等式:22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③…第④個(gè)等式為;根據(jù)上面等式的規(guī)律,猜想第n個(gè)等式(用含n的式子表示,n是正整數(shù)),并說明你猜想的等式正確性.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

結(jié)合圖形,逐項(xiàng)進(jìn)行分析即可.【詳解】在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需滿足的條件有:①∠DAC=∠ABC或AC是∠BCD的平分線;②,故選C.【點(diǎn)睛】本題考查了相似三角形的條件,熟練掌握相似三角形的判定方法是解題的關(guān)鍵.2、B【解析】

因?yàn)镃P是∠OCD的平分線,所以∠DCP=∠OCP,所以∠DCP=∠OPC,則CD∥OP,所以弧AP等于弧BP,所以PA=PB.從而可得出答案.【詳解】解:連接OP,∵CP是∠OCD的平分線,∴∠DCP=∠OCP,

又∵OC=OP,

∴∠OCP=∠OPC,

∴∠DCP=∠OPC,

∴CD∥OP,

又∵CD⊥AB,

∴OP⊥AB,

∴,

∴PA=PB.

∴點(diǎn)P是線段AB垂直平分線和圓的交點(diǎn),

∴當(dāng)C在⊙O上運(yùn)動(dòng)時(shí),點(diǎn)P不動(dòng).

故選:B.【點(diǎn)睛】本題考查了圓心角、弦、弧之間的關(guān)系,以及平行線的判定和性質(zhì),在同圓或等圓中,等弧對等弦.3、C【解析】試題分析:如圖所示,由一次函數(shù)y=kx+b的圖象經(jīng)過第一、三、四象限,可得k>1,b<1.因此可知正比例函數(shù)y=kx的圖象經(jīng)過第一、三象限,反比例函數(shù)y=的圖象經(jīng)過第二、四象限.綜上所述,符合條件的圖象是C選項(xiàng).故選C.考點(diǎn):1、反比例函數(shù)的圖象;2、一次函數(shù)的圖象;3、一次函數(shù)圖象與系數(shù)的關(guān)系4、D【解析】

根據(jù)題意列出關(guān)系式,去括號合并即可得到結(jié)果.【詳解】解:設(shè)小長方形卡片的長為x,寬為y,根據(jù)題意得:x+2y=a,則圖②中兩塊陰影部分周長和是:2a+2(b-2y)+2(b-x)=2a+4b-4y-2x=2a+4b-2(x+2y)=2a+4b-2a=4b.故選擇:D.【點(diǎn)睛】此題考查了整式的加減,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.5、C【解析】由題意,AQ∥NP,MN∥BQ,∴△ACM∽△DCN,△CDN∽△BDP,△BPD∽△BQA,△ACM∽△ABQ,△DCN∽△ABQ,△ACM∽△DBP,所以圖中共有六對相似三角形.故選C.6、B【解析】y<0時(shí),即x軸下方的部分,∴自變量x的取值范圍分兩個(gè)部分是?1<x<1或x>2.故選B.7、D【解析】分別利用極差以及中位數(shù)和眾數(shù)以及平均數(shù)的求法分別分析得出答案.解:由圖表可得:14歲的有5人,故眾數(shù)是14,故選項(xiàng)A正確,不合題意;極差是:16﹣13=3,故選項(xiàng)B正確,不合題意;中位數(shù)是:14.5,故選項(xiàng)C正確,不合題意;平均數(shù)是:(13+14×5+15×4+16×2)÷12≈14.5,故選項(xiàng)D錯(cuò)誤,符合題意.故選D.“點(diǎn)睛”此題主要考查了極差以及中位數(shù)和眾數(shù)以及平均數(shù)的求法,正確把握相關(guān)定義是解題關(guān)鍵.8、B【解析】

根據(jù)反比例函數(shù)的性質(zhì),可得m+1<0,從而得出m的取值范圍.【詳解】∵函數(shù)的圖象在其象限內(nèi)y的值隨x值的增大而增大,∴m+1<0,解得m<-1.故選B.9、D【解析】分析:根據(jù)得k=xy=-6,所以只要點(diǎn)的橫坐標(biāo)與縱坐標(biāo)的積等于-6,就在函數(shù)圖象上.解答:解:原式可化為:xy=-6,A、2×(-3)=-6,符合條件;B、(-3)×2=-6,符合條件;C、3×(-2)=-6,符合條件;D、3×2=6,不符合條件.故選D.10、C【解析】

根據(jù)二次函數(shù)圖像位置確定a0,c0,即可確定正比例函數(shù)和反比例函數(shù)圖像位置.【詳解】解:由二次函數(shù)的圖像可知a0,c0,∴正比例函數(shù)過二四象限,反比例函數(shù)過一三象限.故選C.【點(diǎn)睛】本題考查了函數(shù)圖像的性質(zhì),屬于簡單題,熟悉系數(shù)與函數(shù)圖像的關(guān)系是解題關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、65°或25°【解析】

首先根據(jù)角平分線的定義得出∠EAD=∠EAB,再分情況討論計(jì)算即可.【詳解】解:分情況討論:(1)∵AE平分∠BAD,

∴∠EAD=∠EAB,

∵AD∥BC,

∴∠EAD=∠AEB,

∴∠BAD=∠AEB,

∵∠ABC=50°,

∴∠AEB=?(180°-50°)=65°.(2)∵AE平分∠BAD,

∴∠EAD=∠EAB=,

∵AD∥BC,

∴∠AEB=∠DAE=,∠DAB=∠ABC,

∵∠ABC=50°,

∴∠AEB=×50°=25°.

故答案為:65°或25°.【點(diǎn)睛】本題考查平行線的性質(zhì)、角平分線的定義等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.12、①②④【解析】分析:∵四邊形ABCD是正方形,∴AB=AD。∵△AEF是等邊三角形,∴AE=AF。∵在Rt△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)。∴BE=DF。∵BC=DC,∴BC﹣BE=CD﹣DF。∴CE=CF。∴①說法正確。∵CE=CF,∴△ECF是等腰直角三角形。∴∠CEF=45°。∵∠AEF=60°,∴∠AEB=75°。∴②說法正確。如圖,連接AC,交EF于G點(diǎn),∴AC⊥EF,且AC平分EF。∵∠CAD≠∠DAF,∴DF≠FG。∴BE+DF≠EF。∴③說法錯(cuò)誤。∵EF=2,∴CE=CF=。設(shè)正方形的邊長為a,在Rt△ADF中,,解得,∴。∴。∴④說法正確。綜上所述,正確的序號是①②④。13、【解析】

先畫出樹狀圖,用隨意摸出兩個(gè)球是紅球的結(jié)果個(gè)數(shù)除以所有可能的結(jié)果個(gè)數(shù)即可.【詳解】∵從中隨意摸出兩個(gè)球的所有可能的結(jié)果個(gè)數(shù)是12,隨意摸出兩個(gè)球是紅球的結(jié)果個(gè)數(shù)是6,∴從中隨意摸出兩個(gè)球的概率=;故答案為:.【點(diǎn)睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時(shí)要注意此題是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.14、(x+y+z)(x﹣y﹣z).【解析】

當(dāng)被分解的式子是四項(xiàng)時(shí),應(yīng)考慮運(yùn)用分組分解法進(jìn)行分解.本題后三項(xiàng)可以為一組組成完全平方式,再用平方差公式即可.【詳解】x2-y2-z2-2yz,=x2-(y2+z2+2yz),=x2-(y+z)2,=(x+y+z)(x-y-z).故答案為(x+y+z)(x-y-z).【點(diǎn)睛】本題考查了用分組分解法進(jìn)行因式分解.難點(diǎn)是采用兩兩分組還是三一分組.本題后三項(xiàng)可組成完全平方公式,可把后三項(xiàng)分為一組.15、【解析】分析:根據(jù)二次根式的性質(zhì)先化簡,再合并同類二次根式即可.詳解:原式=3-5=﹣2.點(diǎn)睛:此題主要考查了二次根式的加減,靈活利用二次根式的化簡是解題關(guān)鍵,比較簡單.16、1【解析】解:根據(jù)題意可得x1+x2==5,x1x2==2,∴x1+x2﹣x1x2=5﹣2=1.故答案為:1.點(diǎn)睛:本題主要考查了根據(jù)與系數(shù)的關(guān)系,利用一元二次方程的兩個(gè)根x1、x2具有這樣的關(guān)系:x1+x2=,x1x2=是解題的關(guān)鍵.三、解答題(共8題,共72分)17、解:(1)①.②或.(2)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△ABC相似.理由見解析.【解析】

(1)①當(dāng)AC=BC=2時(shí),△ABC為等腰直角三角形;

②若△CEF與△ABC相似,分兩種情況:①若CE:CF=3:4,如圖1所示,此時(shí)EF∥AB,CD為AB邊上的高;②若CF:CE=3:4,如圖2所示.由相似三角形角之間的關(guān)系,可以推出∠A=∠ECD與∠B=∠FCD,從而得到CD=AD=BD,即D點(diǎn)為AB的中點(diǎn);

(2)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△ABC相似.可以推出∠CFE=∠A,∠C=∠C,從而可以證明兩個(gè)三角形相似.【詳解】(1)若△CEF與△ABC相似.①當(dāng)AC=BC=2時(shí),△ABC為等腰直角三角形,如答圖1所示,此時(shí)D為AB邊中點(diǎn),AD=AC=.②當(dāng)AC=3,BC=4時(shí),有兩種情況:(I)若CE:CF=3:4,如答圖2所示,∵CE:CF=AC:BC,∴EF∥BC.由折疊性質(zhì)可知,CD⊥EF,∴CD⊥AB,即此時(shí)CD為AB邊上的高.在Rt△ABC中,AC=3,BC=4,∴BC=1.∴cosA=.∴AD=AC?cosA=3×=.(II)若CF:CE=3:4,如答圖3所示.∵△CEF∽△CAB,∴∠CEF=∠B.由折疊性質(zhì)可知,∠CEF+∠ECD=90°.又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD.同理可得:∠B=∠FCD,CD=BD.∴AD=BD.∴此時(shí)AD=AB=×1=.綜上所述,當(dāng)AC=3,BC=4時(shí),AD的長為或.(2)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△CBA相似.理由如下:

如圖所示,連接CD,與EF交于點(diǎn)Q.

∵CD是Rt△ABC的中線

∴CD=DB=AB,

∴∠DCB=∠B.

由折疊性質(zhì)可知,∠CQF=∠DQF=90°,

∴∠DCB+∠CFE=90°,

∵∠B+∠A=90°,

∴∠CFE=∠A,

又∵∠ACB=∠ACB,

∴△CEF∽△CBA.18、(1)50、10、0.16;(2)144°;(3).【解析】

(1)由B觀點(diǎn)的人數(shù)和所占的頻率即可求出總?cè)藬?shù);由總?cè)藬?shù)即可求出a、b的值,(2)用360°乘以D觀點(diǎn)的頻率即可得;(3)畫出樹狀圖,然后根據(jù)概率公式列式計(jì)算即可得解【詳解】解:(1)參加本次討論的學(xué)生共有12÷0.24=50,則a=50×0.2=10,b=8÷50=0.16,故答案為50、10、0.16;(2)D所在扇形的圓心角的度數(shù)為360°×0.4=144°;(3)根據(jù)題意畫出樹狀圖如下:由樹形圖可知:共有12中可能情況,選中觀點(diǎn)D(合理競爭,合作雙贏)的概率有6種,所以選中觀點(diǎn)D(合理競爭,合作雙贏)的概率為.【點(diǎn)睛】此題考查了列表法或樹狀圖法求概率以及條形統(tǒng)計(jì)圖.用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.19、(1)出現(xiàn)“和為8”的概率是0.33;(2)x的值不能為7.【解析】

(1)利用頻率估計(jì)概率結(jié)合表格中數(shù)據(jù)得出答案即可;(2)假設(shè)x=7,根據(jù)題意先列出樹狀圖,得出和為9的概率,再與進(jìn)行比較,即可得出答案.【詳解】解:(1)隨著試驗(yàn)次數(shù)不斷增加,出現(xiàn)“和為8”的頻率逐漸穩(wěn)定在0.33,故出現(xiàn)“和為8”的概率是0.33.(2)x的值不能為7.理由:假設(shè)x=7,則P(和為9)=≠,所以x的值不能為7.【點(diǎn)睛】此題主要考查了利用頻率估計(jì)概率以及樹狀圖法求概率,正確畫出樹狀圖是解題關(guān)鍵.20、(1)=;(2)結(jié)論:AC2=AG?AH.理由見解析;(3)①△AGH的面積不變.②m的值為或2或8﹣4..【解析】

(1)證明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;(2)結(jié)論:AC2=AG?AH.只要證明△AHC∽△ACG即可解決問題;(3)①△AGH的面積不變.理由三角形的面積公式計(jì)算即可;②分三種情形分別求解即可解決問題.【詳解】(1)∵四邊形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,∴AC=,∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,∴∠AHC=∠ACG.故答案為=.(2)結(jié)論:AC2=AG?AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,∴△AHC∽△ACG,∴,∴AC2=AG?AH.(3)①△AGH的面積不變.理由:∵S△AGH=?AH?AG=AC2=×(4)2=1.∴△AGH的面積為1.②如圖1中,當(dāng)GC=GH時(shí),易證△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴,∴AE=AB=.如圖2中,當(dāng)CH=HG時(shí),易證AH=BC=4,∵BC∥AH,∴=1,∴AE=BE=2.如圖3中,當(dāng)CG=CH時(shí),易證∠ECB=∠DCF=22.3.在BC上取一點(diǎn)M,使得BM=BE,∴∠BME=∠BEM=43°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.3°,∴CM=EM,設(shè)BM=BE=m,則CM=EMm,∴m+m=4,∴m=4(﹣1),∴AE=4﹣4(﹣1)=8﹣4,綜上所述,滿足條件的m的值為或2或8﹣4.【點(diǎn)睛】本題屬于四邊形綜合題,考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題.21、(1)反比例函數(shù)的解析式為:y=,一次函數(shù)的解析式為:y=x+1;(2)﹣3<x<0或x>2;(3)1.【解析】

(1)根據(jù)點(diǎn)A位于反比例函數(shù)的圖象上,利用待定系數(shù)法求出反比例函數(shù)解析式,將點(diǎn)B坐標(biāo)代入反比例函數(shù)解析式,求出n的值,進(jìn)而求出一次函數(shù)解析式(2)根據(jù)點(diǎn)A和點(diǎn)B的坐標(biāo)及圖象特點(diǎn),即可求出反比例函數(shù)值大于一次函數(shù)值時(shí)x的取值范圍(3)由點(diǎn)A和點(diǎn)B的坐標(biāo)求得三角形以BC為底的高是10,從而求得三角形ABC的面積【詳解】解:(1)∵點(diǎn)A(2,3)在y=的圖象上,∴m=6,∴反比例函數(shù)的解析式為:y=,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)兩點(diǎn)在y=kx+b上,∴,解得:,∴一次函數(shù)的解析式為:y=x+1;(2)由圖象可知﹣3<x<0或x>2;(3)以BC為底,則BC邊上的高為3+2=1,∴S△ABC=×2×1=1.22、(1)9,9;(2)乙;(3)1680棵;【解析】

(1)根據(jù)中位數(shù)定義:將一組數(shù)據(jù)按照從小到大(或從大到小)的順序排列,如果數(shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù)可得答案;(2)根據(jù)樣本要具有代表性可得乙同學(xué)抽取的樣本比較有代表性;(3)利用樣本估計(jì)總體的方法計(jì)算即可.【詳解】(1)表1中30位同學(xué)植樹情況的中位數(shù)是9棵,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論