廣東省省際名校2023-2024學年高三下學期第五次調研考試數學試題含解析_第1頁
廣東省省際名校2023-2024學年高三下學期第五次調研考試數學試題含解析_第2頁
廣東省省際名校2023-2024學年高三下學期第五次調研考試數學試題含解析_第3頁
廣東省省際名校2023-2024學年高三下學期第五次調研考試數學試題含解析_第4頁
廣東省省際名校2023-2024學年高三下學期第五次調研考試數學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省省際名校2023-2024學年高三下學期第五次調研考試數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.小明有3本作業本,小波有4本作業本,將這7本作業本混放在-起,小明從中任取兩本.則他取到的均是自己的作業本的概率為()A. B. C. D.2.已知函數滿足,當時,,則()A.或 B.或C.或 D.或3.下列函數中,既是奇函數,又在上是增函數的是().A. B.C. D.4.拋擲一枚質地均勻的硬幣,每次正反面出現的概率相同,連續拋擲5次,至少連續出現3次正面朝上的概率是()A. B. C. D.5.若復數z滿足,則復數z在復平面內對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.若,則下列不等式不能成立的是()A. B. C. D.7.有一圓柱狀有蓋鐵皮桶(鐵皮厚度忽略不計),底面直徑為cm,高度為cm,現往里面裝直徑為cm的球,在能蓋住蓋子的情況下,最多能裝()(附:)A.個 B.個 C.個 D.個8.如圖,在中,點,分別為,的中點,若,,且滿足,則等于()A.2 B. C. D.9.二項式展開式中,項的系數為()A. B. C. D.10.已知等差數列的前項和為,若,,則數列的公差為()A. B. C. D.11.設雙曲線的右頂點為,右焦點為,過點作平行的一條漸近線的直線與交于點,則的面積為()A. B. C.5 D.612.已知直線過圓的圓心,則的最小值為()A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.若復數(是虛數單位),則________14.已知,圓,直線PM,PN分別與圓O相切,切點為M,N,若,則的最小值為________.15.的展開式中,的系數是__________.(用數字填寫答案)16.不等式對于定義域內的任意恒成立,則的取值范圍為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在中,,的角平分線與交于點,.(Ⅰ)求;(Ⅱ)求的面積.18.(12分)山東省2020年高考將實施新的高考改革方案.考生的高考總成績將由3門統一高考科目成績和自主選擇的3門普通高中學業水平等級考試科目成績組成,總分為750分.其中,統一高考科目為語文、數學、外語,自主選擇的3門普通高中學業水平等級考試科目是從物理、化學、生物、歷史、政治、地理6科中選擇3門作為選考科目,語、數、外三科各占150分,選考科目成績采用“賦分制”,即原始分數不直接用,而是按照學生分數在本科目考試的排名來劃分等級并以此打分得到最后得分.根據高考綜合改革方案,將每門等級考試科目中考生的原始成績從高到低分為A、B+、B、C+、C、D+、D、E共8個等級。參照正態分布原則,確定各等級人數所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.等級考試科目成績計入考生總成績時,將A至E等級內的考生原始成績,依照等比例轉換法則,分別轉換到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八個分數區間,得到考生的等級成績.舉例說明.某同學化學學科原始分為65分,該學科C+等級的原始分分布區間為58~69,則該同學化學學科的原始成績屬C+等級.而C+等級的轉換分區間為61~70,那么該同學化學學科的轉換分為:設該同學化學科的轉換等級分為x,69-6565-58=70-x四舍五入后該同學化學學科賦分成績為67.(1)某校高一年級共2000人,為給高一學生合理選科提供依據,對六個選考科目進行測試,其中物理考試原始成績基本服從正態分布ξ~N(60,12(i)若小明同學在這次考試中物理原始分為84分,等級為B+,其所在原始分分布區間為82~93,求小明轉換后的物理成績;(ii)求物理原始分在區間(72,84)的人數;(2)按高考改革方案,若從全省考生中隨機抽取4人,記X表示這4人中等級成績在區間[61,80]的人數,求X的分布列和數學期望.(附:若隨機變量ξ~N(μ,σ2),則Pμ-σ<ξ<μ+σ=0.68219.(12分)已知各項均為正數的數列的前項和為,且是與的等差中項.(1)證明:為等差數列,并求;(2)設,數列的前項和為,求滿足的最小正整數的值.20.(12分)在直角坐標系中,直線的參數方程為(為參數),直線的參數方程為,(為參數).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(Ⅰ)求的極坐標方程和的直角坐標方程;(Ⅱ)設分別交于兩點(與原點不重合),求的最小值.21.(12分)在①,②,③這三個條件中任選一個,補充在下面問題中.若問題中的正整數存在,求的值;若不存在,說明理由.設正數等比數列的前項和為,是等差數列,__________,,,,是否存在正整數,使得成立?22.(10分)已知,函數.(1)若函數在上為減函數,求實數的取值范圍;(2)求證:對上的任意兩個實數,,總有成立.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

利用計算即可,其中表示事件A所包含的基本事件個數,為基本事件總數.【詳解】從7本作業本中任取兩本共有種不同的結果,其中,小明取到的均是自己的作業本有種不同結果,由古典概型的概率計算公式,小明取到的均是自己的作業本的概率為.故選:A.【點睛】本題考查古典概型的概率計算問題,考查學生的基本運算能力,是一道基礎題.2、C【解析】

簡單判斷可知函數關于對稱,然后根據函數的單調性,并計算,結合對稱性,可得結果.【詳解】由,可知函數關于對稱當時,,可知在單調遞增則又函數關于對稱,所以且在單調遞減,所以或,故或所以或故選:C【點睛】本題考查函數的對稱性以及單調性求解不等式,抽象函數給出式子的意義,比如:,,考驗分析能力,屬中檔題.3、B【解析】

奇函數滿足定義域關于原點對稱且,在上即可.【詳解】A:因為定義域為,所以不可能時奇函數,錯誤;B:定義域關于原點對稱,且滿足奇函數,又,所以在上,正確;C:定義域關于原點對稱,且滿足奇函數,,在上,因為,所以在上不是增函數,錯誤;D:定義域關于原點對稱,且,滿足奇函數,在上很明顯存在變號零點,所以在上不是增函數,錯誤;故選:B【點睛】此題考查判斷函數奇偶性和單調性,注意奇偶性的前提定義域關于原點對稱,屬于簡單題目.4、A【解析】

首先求出樣本空間樣本點為個,再利用分類計數原理求出三個正面向上為連續的3個“1”的樣本點個數,再求出重復數量,可得事件的樣本點數,根據古典概型的概率計算公式即可求解.【詳解】樣本空間樣本點為個,具體分析如下:記正面向上為1,反面向上為0,三個正面向上為連續的3個“1”,有以下3種位置1____,__1__,____1.剩下2個空位可是0或1,這三種排列的所有可能分別都是,但合并計算時會有重復,重復數量為,事件的樣本點數為:個.故不同的樣本點數為8個,.故選:A【點睛】本題考查了分類計數原理與分步計數原理,古典概型的概率計算公式,屬于基礎題5、A【解析】

化簡復數,求得,得到復數在復平面對應點的坐標,即可求解.【詳解】由題意,復數z滿足,可得,所以復數在復平面內對應點的坐標為位于第一象限故選:A.【點睛】本題主要考查了復數的運算,以及復數的幾何表示方法,其中解答中熟記復數的運算法則,結合復數的表示方法求解是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.6、B【解析】

根據不等式的性質對選項逐一判斷即可.【詳解】選項A:由于,即,,所以,所以,所以成立;選項B:由于,即,所以,所以,所以不成立;選項C:由于,所以,所以,所以成立;選項D:由于,所以,所以,所以,所以成立.故選:B.【點睛】本題考查不等關系和不等式,屬于基礎題.7、C【解析】

計算球心連線形成的正四面體相對棱的距離為cm,得到最上層球面上的點距離桶底最遠為cm,得到不等式,計算得到答案.【詳解】由題意,若要裝更多的球,需要讓球和鐵皮桶側面相切,且相鄰四個球兩兩相切,這樣,相鄰的四個球的球心連線構成棱長為cm的正面體,易求正四面體相對棱的距離為cm,每裝兩個球稱為“一層”,這樣裝層球,則最上層球面上的點距離桶底最遠為cm,若想要蓋上蓋子,則需要滿足,解得,所以最多可以裝層球,即最多可以裝個球.故選:【點睛】本題考查了圓柱和球的綜合問題,意在考查學生的空間想象能力和計算能力.8、D【解析】

選取為基底,其他向量都用基底表示后進行運算.【詳解】由題意是的重心,,∴,,∴,故選:D.【點睛】本題考查向量的數量積,解題關鍵是選取兩個不共線向量作為基底,其他向量都用基底表示參與運算,這樣做目標明確,易于操作.9、D【解析】

寫出二項式的通項公式,再分析的系數求解即可.【詳解】二項式展開式的通項為,令,得,故項的系數為.故選:D【點睛】本題主要考查了二項式定理的運算,屬于基礎題.10、D【解析】

根據等差數列公式直接計算得到答案.【詳解】依題意,,故,故,故,故選:D.【點睛】本題考查了等差數列的計算,意在考查學生的計算能力.11、A【解析】

根據雙曲線的標準方程求出右頂點、右焦點的坐標,再求出過點與的一條漸近線的平行的直線方程,通過解方程組求出點的坐標,最后利用三角形的面積公式進行求解即可.【詳解】由雙曲線的標準方程可知中:,因此右頂點的坐標為,右焦點的坐標為,雙曲線的漸近線方程為:,根據雙曲線和漸近線的對稱性不妨設點作平行的一條漸近線的直線與交于點,所以直線的斜率為,因此直線方程為:,因此點的坐標是方程組:的解,解得方程組的解為:,即,所以的面積為:.故選:A【點睛】本題考查了雙曲線的漸近線方程的應用,考查了兩直線平行的性質,考查了數學運算能力.12、D【解析】

圓心坐標為,代入直線方程,再由乘1法和基本不等式,展開計算即可得到所求最小值.【詳解】圓的圓心為,由題意可得,即,,,則,當且僅當且即時取等號,故選:.【點睛】本題考查最值的求法,注意運用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時考查直線與圓的關系,考查運算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

直接根據復數的代數形式四則運算法則計算即可.【詳解】,.【點睛】本題主要考查復數的代數形式四則運算法則的應用.14、【解析】

由可知R為中點,設,由過切點的切線方程即可求得,,代入,,則在直線上,即可得方程為,將,代入化簡可得,則直線過定點,由則點在以為直徑的圓上,則.即可求得.【詳解】如圖,由可知R為MN的中點,所以,,設,則切線PM的方程為,即,同理可得,因為PM,PN都過,所以,,所以在直線上,從而直線MN方程為,因為,所以,即直線MN方程為,所以直線MN過定點,所以R在以OQ為直徑的圓上,所以.故答案為:.【點睛】本題考查直線和圓的位置關系,考查圓的切線方程,定點和圓上動點距離的最值問題,考查學生的數形結合能力和計算能力,難度較難.15、【解析】

根據組合的知識,結合組合數的公式,可得結果.【詳解】由題可知:項來源可以是:(1)取1個,4個(2)取2個,3個的系數為:故答案為:【點睛】本題主要考查組合的知識,熟悉二項式定理展開式中每一項的來源,實質上每個因式中各取一項的乘積,轉化為組合的知識,屬中檔題.16、【解析】

根據題意,分離參數,轉化為只對于內的任意恒成立,令,則只需在定義域內即可,利用放縮法,得出,化簡后得出,即可得出的取值范圍.【詳解】解:已知對于定義域內的任意恒成立,即對于內的任意恒成立,令,則只需在定義域內即可,,,當時取等號,由可知,,當時取等號,,當有解時,令,則,在上單調遞增,又,,使得,,則,所以的取值范圍為.故答案為:.【點睛】本題考查利用導數研究函數單調性和最值,解決恒成立問題求參數值,涉及分離參數法和放縮法,考查轉化能力和計算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】試題分析:(Ⅰ)在中,由余弦定理得,由正弦定理得,可得解;(Ⅱ)由(Ⅰ)可知,進而得,在中,由正弦定理得,所以的面積即可得解.試題解析:(Ⅰ)在中,由余弦定理得,所以,由正弦定理得,所以.(Ⅱ)由(Ⅰ)可知.在中,.在中,由正弦定理得,所以.所以的面積.18、(1)(i)83.;(ii)272.(2)見解析.【解析】

(1)根據原始分數分布區間及轉換分區間,結合所給示例,即可求得小明轉換后的物理成績;根據正態分布滿足N60,122(2)根據各等級人數所占比例可知在區間61,80內的概率為25,由二項分布即可求得X【詳解】(1)(i)設小明轉換后的物理等級分為x,93-8484-82求得x≈82.64.小明轉換后的物理成績為83分;(ii)因為物理考試原始分基本服從正態分布N60,所以P(72<ξ<84)=P(60<ξ<84)-P(60<ξ<72)===0.136.所以物理原始分在區間72,84的人數為2000×0.136=272(人);(2)由題意得,隨機抽取1人,其等級成績在區間61,80內的概率為25隨機抽取4人,則X~B4,PX=0=3PX=2=CPX=4X的分布列為X01234P812162169616數學期望EX【點睛】本題考查了統計的綜合應用,正態分布下求某區間概率的方法,分布列及數學期望的求法,文字多,數據多,需要細心的分析和理解,屬于中檔題。19、(1)見解析,(2)最小正整數的值為35.【解析】

(1)由等差中項可知,當時,得,整理后可得,從而證明為等差數列,繼而可求.(2),則可求出,令,即可求出的取值范圍,進而求出最小值.【詳解】解析:(1)由題意可得,當時,,∴,,當時,,整理可得,∴是首項為1,公差為1的等差數列,∴,.(2)由(1)可得,∴,解得,∴最小正整數的值為35.【點睛】本題考查了等差中項,考查了等差數列的定義,考查了與的關系,考查了裂項相消求和.當已知有與的遞推關系時,常代入進行整理.證明數列是等差數列時,一般借助數列,即后一項與前一項的差為常數.20、(Ⅰ)直線的極坐標方程為,直線的極坐標方程為,的直角坐標方程為;(Ⅱ)2.【解析】

(Ⅰ)由定義可直接寫出直線的極坐標方程,對曲線同乘可得:,轉化成直角坐標為;(Ⅱ)分別聯立兩直線和曲線的方程,由得,由得,則,結合三角函數即可求解;【詳解】(Ⅰ)直線的極坐標方程為,直線的極坐標方程為由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論