江蘇省常州市二十四中學2023-2024學年中考考前最后一卷數學試卷含解析_第1頁
江蘇省常州市二十四中學2023-2024學年中考考前最后一卷數學試卷含解析_第2頁
江蘇省常州市二十四中學2023-2024學年中考考前最后一卷數學試卷含解析_第3頁
江蘇省常州市二十四中學2023-2024學年中考考前最后一卷數學試卷含解析_第4頁
江蘇省常州市二十四中學2023-2024學年中考考前最后一卷數學試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省常州市二十四中學2023-2024學年中考考前最后一卷數學試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,數軸上的三點所表示的數分別為,其中,如果|那么該數軸的原點的位置應該在()A.點的左邊 B.點與點之間 C.點與點之間 D.點的右邊2.將一些半徑相同的小圓按如圖所示的規律擺放,第1個圖形有4個小圓,第2個圖形有8個小圓,第3個圖形有14個小圓,…,依次規律,第7個圖形的小圓個數是()A.56 B.58 C.63 D.723.若代數式有意義,則實數x的取值范圍是()A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠14.甲、乙兩輛汽車沿同一路線從A地前往B地,甲車以a千米/時的速度勻速行駛,途中出現故障后停車維修,修好后以2a千米/時的速度繼續行駛;乙車在甲車出發2小時后勻速前往B地,比甲車早30分鐘到達.到達B地后,乙車按原速度返回A地,甲車以2a千米/時的速度返回A地.設甲、乙兩車與A地相距s(千米),甲車離開A地的時間為t(小時),s與t之間的函數圖象如圖所示.下列說法:①a=40;②甲車維修所用時間為1小時;③兩車在途中第二次相遇時t的值為5.25;④當t=3時,兩車相距40千米,其中不正確的個數為()A.0個 B.1個 C.2個 D.3個5.如圖,函數y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,點C在第一象限,AC⊥AB,且AC=AB,則點C的坐標為()A.(2,1) B.(1,2) C.(1,3) D.(3,1)6.將拋物線y=x2﹣x+1先向左平移2個單位長度,再向上平移3個單位長度,則所得拋物線的表達式為()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+47.下列事件中必然發生的事件是()A.一個圖形平移后所得的圖形與原來的圖形不全等B.不等式的兩邊同時乘以一個數,結果仍是不等式C.200件產品中有5件次品,從中任意抽取6件,至少有一件是正品D.隨意翻到一本書的某頁,這頁的頁碼一定是偶數8.如圖,△A′B′C′是△ABC以點O為位似中心經過位似變換得到的,若△A′B′C′的面積與△ABC的面積比是4:9,則OB′:OB為()A.2:3 B.3:2 C.4:5 D.4:99.如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數y=在第一象限的圖象經過點B,則△OAC與△BAD的面積之差S△OAC﹣S△BAD為()A.36 B.12 C.6 D.310.如圖,是的外接圓,已知,則的大小為A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,菱形ABCD和菱形CEFG中,∠ABC=60°,點B,C,E在同一條直線上,點D在CG上,BC=1,CE=3,H是AF的中點,則CH的長為________.12.如圖,長方體的底面邊長分別為1cm和3cm,高為6cm.如果用一根細線從點A開始經過4個側面纏繞一圈到達點B,那么所用細線最短需要_____cm.13.請看楊輝三角(1),并觀察下列等式(2):根據前面各式的規律,則(a+b)6=.14.如圖,這是由邊長為1的等邊三角形擺出的一系列圖形,按這種方式擺下去,則第n個圖形的周長是___.15.在Rt△ABC紙片上剪出7個如圖所示的正方形,點E,F落在AB邊上,每個正方形的邊長為1,則Rt△ABC的面積為_____.16.如果一個三角形有一條邊上的高等于這條邊的一半,那么我們把這個三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜邊AB=5,則它的周長等于_____.三、解答題(共8題,共72分)17.(8分)如圖,,,,求證:。18.(8分)某高校學生會在某天午餐后,隨機調查了部分同學就餐飯菜的剩余情況,并將結果統計后繪制成了如圖所示的不完整的統計圖.(1)這次被調查的同學共有名;(2)補全條形統計圖;(3)計算在扇形統計圖中剩大量飯菜所對應扇形圓心角的度數;(4)校學生會通過數據分析,估計這次被調查的所有學生一餐浪費的食物可以供200人用一餐.據此估算,該校20000名學生一餐浪費的食物可供多少人食用一餐?19.(8分)已知AC,EC分別為四邊形ABCD和EFCG的對角線,點E在△ABC內,∠CAE+∠CBE=1.(1)如圖①,當四邊形ABCD和EFCG均為正方形時,連接BF.i)求證:△CAE∽△CBF;ii)若BE=1,AE=2,求CE的長;(2)如圖②,當四邊形ABCD和EFCG均為矩形,且時,若BE=1,AE=2,CE=3,求k的值;(3)如圖③,當四邊形ABCD和EFCG均為菱形,且∠DAB=∠GEF=45°時,設BE=m,AE=n,CE=p,試探究m,n,p三者之間滿足的等量關系.(直接寫出結果,不必寫出解答過程)20.(8分)有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運貨18噸,2輛大貨車與6輛小貨車一次可以運貨17噸.請問1輛大貨車和1輛小貨車一次可以分別運貨多少噸?目前有33噸貨物需要運輸,貨運公司擬安排大小貨車共計10輛,全部貨物一次運完,其中每輛大貨車一次運費花費130元,每輛小貨車一次運貨花費100元,請問貨運公司應如何安排車輛最節省費用?21.(8分)計算:.22.(10分)規定:不相交的兩個函數圖象在豎直方向上的最短距離為這兩個函數的“親近距離”(1)求拋物線y=x2﹣2x+3與x軸的“親近距離”;(2)在探究問題:求拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”的過程中,有人提出:過拋物線的頂點向x軸作垂線與直線相交,則該問題的“親近距離”一定是拋物線頂點與交點之間的距離,你同意他的看法嗎?請說明理由.(3)若拋物線y=x2﹣2x+3與拋物線y=+c的“親近距離”為,求c的值.23.(12分)觀察下列各式:①②③由此歸納出一般規律__________.24.如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點,連接OG并延長交⊙O于點D,連接BD交AE于點F,延長AE至點C,使得FC=BC,連接BC.(1)求證:BC是⊙O的切線;(2)⊙O的半徑為5,tanA=,求FD的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

根據絕對值是數軸上表示數的點到原點的距離,分別判斷出點A、B、C到原點的距離的大小,從而得到原點的位置,即可得解.【詳解】∵|a|>|c|>|b|,

∴點A到原點的距離最大,點C其次,點B最小,

又∵AB=BC,

∴原點O的位置是在點B、C之間且靠近點B的地方.

故選:C.【點睛】此題考查了實數與數軸,理解絕對值的定義是解題的關鍵.2、B【解析】試題分析:第一個圖形的小圓數量=1×2+2=4;第二個圖形的小圓數量=2×3+2=8;第三個圖形的小圓數量=3×4+2=14;則第n個圖形的小圓數量=n(n+1)+2個,則第七個圖形的小圓數量=7×8+2=58個.考點:規律題3、D【解析】試題分析:∵代數式有意義,∴,解得x≥0且x≠1.故選D.考點:二次根式,分式有意義的條件.4、A【解析】解:①由函數圖象,得a=120÷3=40,故①正確,②由題意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲車維修的時間為1小時;故②正確,③如圖:∵甲車維修的時間是1小時,∴B(4,120).∵乙在甲出發2小時后勻速前往B地,比甲早30分鐘到達.∴E(5,240).∴乙行駛的速度為:240÷3=80,∴乙返回的時間為:240÷80=3,∴F(8,0).設BC的解析式為y1=k1t+b1,EF的解析式為y2=k2t+b2,由圖象得,,,解得,,∴y1=80t﹣200,y2=﹣80t+640,當y1=y2時,80t﹣200=﹣80t+640,t=5.2.∴兩車在途中第二次相遇時t的值為5.2小時,故弄③正確,④當t=3時,甲車行的路程為:120km,乙車行的路程為:80×(3﹣2)=80km,∴兩車相距的路程為:120﹣80=40千米,故④正確,故選A.5、D【解析】

過點C作CD⊥x軸與D,如圖,先利用一次函數圖像上點的坐標特征確定B(0,2),A(1,0),再證明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,則C點坐標可求.【詳解】如圖,過點C作CD⊥x軸與D.∵函數y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,∴當x=0時,y=2,則B(0,2);當y=0時,x=1,則A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,∠AOB=【點睛】本題主要考查一次函數的基本概念。角角邊定理、全等三角形的性質以及一次函數的應用,熟練掌握相關知識點是解答的關鍵.6、A【解析】

先將拋物線解析式化為頂點式,左加右減的原則即可.【詳解】y=x當向左平移2個單位長度,再向上平移3個單位長度,得y=x-故選A.【點睛】本題考查二次函數的平移;掌握平移的法則“左加右減”,二次函數的平移一定要將解析式化為頂點式進行;7、C【解析】

直接利用隨機事件、必然事件、不可能事件分別分析得出答案.【詳解】A、一個圖形平移后所得的圖形與原來的圖形不全等,是不可能事件,故此選項錯誤;B、不等式的兩邊同時乘以一個數,結果仍是不等式,是隨機事件,故此選項錯誤;C、200件產品中有5件次品,從中任意抽取6件,至少有一件是正品,是必然事件,故此選項正確;D、隨意翻到一本書的某頁,這頁的頁碼一定是偶數,是隨機事件,故此選項錯誤;故選C.【點睛】此題主要考查了隨機事件、必然事件、不可能事件,正確把握相關定義是解題關鍵.8、A【解析】

根據位似的性質得△ABC∽△A′B′C′,再根據相似三角形的性質進行求解即可得.【詳解】由位似變換的性質可知,A′B′∥AB,A′C′∥AC,∴△A′B′C′∽△ABC,∵△A'B'C'與△ABC的面積的比4:9,∴△A'B'C'與△ABC的相似比為2:3,∴,故選A.【點睛】本題考查了位似變換:如果兩個圖形不僅是相似圖形,而且對應頂點的連線相交于一點,對應邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.9、D【解析】設△OAC和△BAD的直角邊長分別為a、b,結合等腰直角三角形的性質及圖象可得出點B的坐標,根據三角形的面積公式結合反比例函數系數k的幾何意義以及點B的坐標即可得出結論.

解:設△OAC和△BAD的直角邊長分別為a、b,

則點B的坐標為(a+b,a﹣b).∵點B在反比例函數的第一象限圖象上,

∴(a+b)×(a﹣b)=a2﹣b2=1.

∴S△OAC﹣S△BAD=a2﹣b2=(a2﹣b2)=×1=2.

故選D.點睛:本題主要考查了反比例函數系數k的幾何意義、等腰三角形的性質以及面積公式,解題的關鍵是找出a2﹣b2的值.解決該題型題目時,要設出等腰直角三角形的直角邊并表示出面積,再用其表示出反比例函數上點的坐標是關鍵.10、A【解析】解:△AOB中,OA=OB,∠ABO=30°;∴∠AOB=180°-2∠ABO=120°;∴∠ACB=∠AOB=60°;故選A.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

連接AC、CF,GE,根據菱形性質求出AC、CF,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根據直角三角形斜邊上的中線等于斜邊的一半解答即可.【詳解】解:如圖,連接AC、CF、GE,CF和GE相交于O點∵在菱形ABCD中,,BC=1,∴,AC=1,∴∵在菱形CEFG中,是它的對角線,∴,∴,∴∵==,∴在,又∵H是AF的中點∴.【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質,菱形的性質,勾股定理,熟記各性質并作輔助線構造出直角三角形是解題的關鍵.12、1【解析】

要求所用細線的最短距離,需將長方體的側面展開,進而根據“兩點之間線段最短”得出結果.【詳解】解:將長方體展開,連接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根據兩點之間線段最短,AB′==1cm.故答案為1.考點:平面展開-最短路徑問題.13、a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.【解析】

通過觀察可以看出(a+b)2的展開式為2次7項式,a的次數按降冪排列,b的次數按升冪排列,各項系數分別為2、2、25、20、25、2、2.【詳解】通過觀察可以看出(a+b)2的展開式為2次7項式,a的次數按降冪排列,b的次數按升冪排列,各項系數分別為2、2、25、20、25、2、2.所以(a+b)2=a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.14、2n+1【解析】觀察擺放的一系列圖形,可得到依次的周長分別是3,4,5,6,7,…,從中得到規律,根據規律寫出第n個圖形的周長.解:由已知一系列圖形觀察圖形依次的周長分別是:(1)2+1=3,(2)2+2=4,(3)2+3=5,(4)2+4=6,(5)2+5=7,…,所以第n個圖形的周長為:2+n.故答案為2+n.此題考查的是圖形數字的變化類問題,關鍵是通過觀察分析得出規律,根據規律求解.15、【解析】

如圖,設AH=x,GB=y,利用平行線分線段成比例定理,構建方程組求出x,y即可解決問題.【詳解】解:如圖,設AH=x,GB=y,∵EH∥BC,,∵FG∥AC,,由①②可得x=,y=2,∴AC=,BC=7,∴S△ABC=,故答案為.【點睛】本題考查圖形的相似,平行線分線段成比例定理,解題的關鍵是學會利用參數構建方程組解決問題,屬于中考常考題型.16、5+3或5+5.【解析】

分兩種情況討論:①Rt△ABC中,CD⊥AB,CD=AB=;②Rt△ABC中,AC=BC,分別依據勾股定理和三角形的面積公式,即可得到該三角形的周長為5+3或5+5.【詳解】由題意可知,存在以下兩種情況:(1)當一條直角邊是另一條直角邊的一半時,這個直角三角形是半高三角形,此時設較短的直角邊為a,則較長的直角邊為2a,由勾股定理可得:,解得:,∴此時較短的直角邊為,較長的直角邊為,∴此時直角三角形的周長為:;(2)當斜邊上的高是斜邊的一半是,這個直角三角形是半高三角形,此時設兩直角邊分別為x、y,這有題意可得:①,②S△=,∴③,由①+③得:,即,∴,∴此時這個直角三角形的周長為:.綜上所述,這個半高直角三角形的周長為:或.故答案為或.【點睛】(1)讀懂題意,弄清“半高三角形”的含義是解題的基礎;(2)根據題意,若直角三角形是“半高三角形”,則存在兩種情況:①一條直角邊是另一條直角邊的一半;②斜邊上的高是斜邊的一半;解題時這兩種情況都要討論,不要忽略了其中一種.三、解答題(共8題,共72分)17、見解析【解析】

據∠1=∠2可得∠BAC=∠EAD,再加上條件AB=AE,∠C=∠D可證明△ABC≌△AED.【詳解】證明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD.∵在△ABC和△AED中,∴△ABC≌△AED(AAS).【點睛】此題主要考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角18、(1)1000(2)200(3)54°(4)4000人【解析】試題分析:(1)根據沒有剩飯的人數是400人,所占的百分比是40%,據此即可求得調查的總人數;(2)利用(1)中求得結果減去其它組的人數即可求得剩少量飯的人數,從而補全直方圖;(3)利用360°乘以對應的比例即可求解;(4)利用20000除以調查的總人數,然后乘以200即可求解.試題解析:(1)被調查的同學的人數是400÷40%=1000(名);(2)剩少量的人數是1000-400-250-150=200(名),;(3)在扇形統計圖中剩大量飯菜所對應扇形圓心角的度數是:360°×1501000(4)200001000答:校20000名學生一餐浪費的食物可供4000人食用一餐.【點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大小.19、(1)i)證明見試題解析;ii);(2);(3).【解析】

(1)i)由∠ACE+∠ECB=45°,∠BCF+∠ECB=45°,得到∠ACE=∠BCF,又由于,故△CAE∽△CBF;ii)由,得到BF=,再由△CAE∽△CBF,得到∠CAE=∠CBF,進一步可得到∠EBF=1°,從而有,解得;(2)連接BF,同理可得:∠EBF=1°,由,得到,,故,從而,得到,代入解方程即可;(3)連接BF,同理可得:∠EBF=1°,過C作CH⊥AB延長線于H,可得:,,故,從而有.【詳解】解:(1)i)∵∠ACE+∠ECB=45°,∠BCF+∠ECB=45°,∴∠ACE=∠BCF,又∵,∴△CAE∽△CBF;ii)∵,∴BF=,∵△CAE∽△CBF,∴∠CAE=∠CBF,又∵∠CAE+∠CBE=1°,∴∠CBF+∠CBE=1°,即∠EBF=1°,∴,解得;(2)連接BF,同理可得:∠EBF=1°,∵,∴,,∴,∴,,∴,∴,解得;(3)連接BF,同理可得:∠EBF=1°,過C作CH⊥AB延長線于H,可得:,,∴,∴.【點睛】本題考查相似三角形的判定與性質;正方形的性質;矩形的性質;菱形的性質.20、(1)1輛大貨車一次可以運貨4噸,1輛小貨車一次可以運貨噸;(2)貨運公司應安排大貨車8輛時,小貨車2輛時最節省費用.【解析】

(1)設1輛大貨車和1輛小貨車一次可以分別運貨噸和噸,根據“3輛大貨車與4輛小貨車一次可以運貨18噸、2輛大貨車與6輛小貨車一次可以運貨17噸”列方程組求解可得;(2)因運輸33噸且用10輛車一次運完,故10輛車所運貨不低于10噸,所以列不等式,大貨車運費高于小貨車,故用大貨車少費用就小進行安排即可.【詳解】(1)解:設1輛大貨車一次可以運貨x噸,1輛小貨車一次可以運貨y噸,依題可得:

,

解得:.

答:1輛大貨車一次可以運貨4噸,1輛小貨車一次可以運貨噸.

(2)解:設大貨車有m輛,則小貨車10-m輛,依題可得:

4m+(10-m)≥33

m≥0

10-m≥0

解得:≤m≤10,

∴m=8,9,10;

∴當大貨車8輛時,則小貨車2輛;

當大貨車9輛時,則小貨車1輛;

當大貨車10輛時,則小貨車0輛;

設運費為W=130m+100(10-m)=30m+1000,

∵k=30〉0,

∴W隨x的增大而增大,

∴當m=8時,運費最少,

∴W=130×8+100×2=1240(元),

答:貨運公司應安排大貨車8輛時,小貨車2輛時最節省費用.【點睛】考查了二元一次方程組和一元一次不等式的應用,體現了數學建模思想,考查了學生用方程解實際問題的能力,解題的關鍵是根據題意建立方程組,并利用不等式求解大貨車的數量,解題時注意題意中一次運完的含義,此類試題常用的方法為建立方程,利用不等式或者一次函數性質確定方案.21、.【解析】

利用特殊角的三角函數值以及負指數冪的性質和絕對值的性質化簡即可得出答案.【詳解】解:原式==.故答案為.【點睛】本題考查實數運算,特殊角的三角函數值,負整數指數冪,正確化簡各數是解題關鍵.22、(1)2;(2)不同意他的看法,理由詳見解析;(3)c=1.【解析】

(1)把y=x2﹣2x+3配成頂點式得到拋物線上的點到x軸的最短距離,然后根據題意解決問題;(2)如圖,P點為拋物線y=x2﹣2x+3任意一點,作PQ∥y軸交直線y=x﹣1于Q,設P(t,t2﹣2t+3),則Q(t,t﹣1),則PQ=t2﹣2t+3﹣(t﹣1),然后利用二次函數的性質得到拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”,然后對他的看法進行判斷;(3)M點為拋物線y=x2﹣2x+3任意一點,作MN∥y軸交拋物線于N,設M(t,t2﹣2t+3),則N(t,t2+c),與(2)方法一樣得到MN的最小值為﹣c,從而得到拋物線y=x2﹣2x+3與拋物線的“親近距離”,所以,然后解方程即可.【詳解】(1)∵y=x2﹣2x+3=(x﹣1)2+2,∴拋物線上的點到x軸的最短距離為2,∴拋物線y=x2﹣2x+3與x軸的“親近距離”為:2;(2)不同意他的看法.理由如下:如圖,P點為拋物線y=x2﹣2x+3任意一點,作PQ∥y軸交直線y=x﹣1于Q,設P(t,t2﹣2t+3),則Q(t,t﹣1),∴PQ=t2﹣2t+3﹣(t﹣

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論