遼寧省葫蘆島建昌縣聯考2023-2024學年中考數學全真模擬試題含解析_第1頁
遼寧省葫蘆島建昌縣聯考2023-2024學年中考數學全真模擬試題含解析_第2頁
遼寧省葫蘆島建昌縣聯考2023-2024學年中考數學全真模擬試題含解析_第3頁
遼寧省葫蘆島建昌縣聯考2023-2024學年中考數學全真模擬試題含解析_第4頁
遼寧省葫蘆島建昌縣聯考2023-2024學年中考數學全真模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

遼寧省葫蘆島建昌縣聯考2023-2024學年中考數學全真模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知反比例函數,下列結論不正確的是()A.圖象經過點(﹣2,1) B.圖象在第二、四象限C.當x<0時,y隨著x的增大而增大 D.當x>﹣1時,y>22.不等式組的解集是()A.x>﹣1 B.x≤2 C.﹣1<x<2 D.﹣1<x≤23.下列命題正確的是()A.內錯角相等B.-1是無理數C.1的立方根是±1D.兩角及一邊對應相等的兩個三角形全等4.如圖,小明要測量河內小島B到河邊公路l的距離,在A點測得,在C點測得,又測得米,則小島B到公路l的距離為()米.A.25 B. C. D.5.如圖所示,如果將一副三角板按如圖方式疊放,那么∠1等于()A. B. C. D.6.實數a、b在數軸上的對應點的位置如圖所示,則正確的結論是()A.a<﹣1 B.ab>0 C.a﹣b<0 D.a+b<07.下列各式中計算正確的是()A.x3?x3=2x6 B.(xy2)3=xy6 C.(a3)2=a5 D.t10÷t9=t8.下表是某校合唱團成員的年齡分布,對于不同的x,下列關于年齡的統計量不會發生改變的是()年齡/歲13141516頻數515x10-xA.平均數、中位數 B.眾數、方差 C.平均數、方差 D.眾數、中位數9.2017年,山西省經濟發展由“疲”轉“興”,經濟增長步入合理區間,各項社會事業發展取得顯著成績,全面建成小康社會邁出嶄新步伐.2018年經濟總體保持平穩,第一季度山西省地區生產總值約為3122億元,比上年增長6.2%.數據3122億元用科學記數法表示為()A.3122×108元 B.3.122×103元C.3122×1011元 D.3.122×1011元10.如圖,BC∥DE,若∠A=35°,∠E=60°,則∠C等于()A.60° B.35° C.25° D.20°二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在四邊形ABCD中,對角線AC,BD交于點O,OA=OC,OB=OD,添加一個條件使四邊形ABCD是菱形,那么所添加的條件可以是___________(寫出一個即可).12.如圖,某城市的電視塔AB坐落在湖邊,數學老師帶領學生隔湖測量電視塔AB的高度,在點M處測得塔尖點A的仰角∠AMB為22.5°,沿射線MB方向前進200米到達湖邊點N處,測得塔尖點A在湖中的倒影A′的俯角∠A′NB為45°,則電視塔AB的高度為______米(結果保留根號).13.已知,是關于x的一元二次方程x2+(2m+3)x+m2=0的兩個不相等的實數根,且滿足=﹣1,則m的值是____.14.從5張上面分別寫著“加”“油”“向”“未”“來”這5個字的卡片(大小、形狀完全相同)中隨機抽取一張,則這張卡片上面恰好寫著“加”字的概率是__________.15.關于x的方程kx2﹣(2k+1)x+k+2=0有實數根,則k的取值范圍是_____.16.比較大小:_____1(填“<”或“>”或“=”).17.如圖,在平面直角坐標系中,Rt△ABO的頂點O與原點重合,頂點B在x軸上,∠ABO=90°,OA與反比例函數y=的圖象交于點D,且OD=2AD,過點D作x軸的垂線交x軸于點C.若S四邊形ABCD=10,則k的值為.三、解答題(共7小題,滿分69分)18.(10分)先化簡,再求值:,其中.19.(5分)如圖,∠ABC=∠BCD=90°,∠A=45°,∠D=30°,BC=1,AC,BD交于點O.求BODO20.(8分)如圖,△ABC和△BEC均為等腰直角三角形,且∠ACB=∠BEC=90°,AC=4,點P為線段BE延長線上一點,連接CP以CP為直角邊向下作等腰直角△CPD,線段BE與CD相交于點F.(1)求證:;(2)連接BD,請你判斷AC與BD有什么位置關系?并說明理由;(3)若PE=1,求△PBD的面積.21.(10分)如圖,在中,,點在上運動,點在上,始終保持與相等,的垂直平分線交于點,交于,判斷與的位置關系,并說明理由;若,,,求線段的長.22.(10分)已知:如圖,在△OAB中,OA=OB,⊙O經過AB的中點C,與OB交于點D,且與BO的延長線交于點E,連接EC,CD.(1)試判斷AB與⊙O的位置關系,并加以證明;(2)若tanE=,⊙O的半徑為3,求OA的長.23.(12分)如圖,在△ABC中,D為BC邊上一點,AC=DC,E為AB邊的中點,(1)尺規作圖:作∠C的平分線CF,交AD于點F(保留作圖痕跡,不寫作法);(2)連接EF,若BD=4,求EF的長.24.(14分)如圖,在矩形紙片ABCD中,AB=6,BC=1.把△BCD沿對角線BD折疊,使點C落在C′處,BC′交AD于點G;E、F分別是C′D和BD上的點,線段EF交AD于點H,把△FDE沿EF折疊,使點D落在D′處,點D′恰好與點A重合.(1)求證:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的長.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

A選項:把(-2,1)代入解析式得:左邊=右邊,故本選項正確;

B選項:因為-2<0,圖象在第二、四象限,故本選項正確;

C選項:當x<0,且k<0,y隨x的增大而增大,故本選項正確;

D選項:當x>0時,y<0,故本選項錯誤.

故選D.2、D【解析】由﹣x<1得,∴x>﹣1,由3x﹣5≤1得,3x≤6,∴x≤2,∴不等式組的解集為﹣1<x≤2,故選D3、D【解析】解:A.兩直線平行,內錯角相等,故A錯誤;B.-1是有理數,故B錯誤;C.1的立方根是1,故C錯誤;D.兩角及一邊對應相等的兩個三角形全等,正確.故選D.4、B【解析】

解:過點B作BE⊥AD于E.設BE=x.∵∠BCD=60°,tan∠BCE,,在直角△ABE中,AE=,AC=50米,則,解得即小島B到公路l的距離為,故選B.5、B【解析】解:如圖,∠2=90°﹣45°=45°,由三角形的外角性質得,∠1=∠2+60°=45°+60°=105°.故選B.點睛:本題考查了三角形的一個外角等于與它不相鄰的兩個內角的和的性質,熟記性質是解題的關鍵.6、C【解析】

直接利用a,b在數軸上的位置,進而分別對各個選項進行分析得出答案.【詳解】選項A,從數軸上看出,a在﹣1與0之間,∴﹣1<a<0,故選項A不合題意;選項B,從數軸上看出,a在原點左側,b在原點右側,∴a<0,b>0,∴ab<0,故選項B不合題意;選項C,從數軸上看出,a在b的左側,∴a<b,即a﹣b<0,故選項C符合題意;選項D,從數軸上看出,a在﹣1與0之間,∴1<b<2,∴|a|<|b|,∵a<0,b>0,所以a+b=|b|﹣|a|>0,故選項D不合題意.故選:C.【點睛】本題考查數軸和有理數的四則運算,解題的關鍵是掌握利用數軸表示有理數的大小.7、D【解析】試題解析:A、原式計算錯誤,故本選項錯誤;B、原式計算錯誤,故本選項錯誤;C、原式計算錯誤,故本選項錯誤;D、原式計算正確,故本選項正確;故選D.點睛:同底數冪相除,底數不變,指數相減.8、D【解析】

由表易得x+(10-x)=10,所以總人數不變,14歲的人最多,眾數不變,中位數也可以確定.【詳解】∵年齡為15歲和16歲的同學人數之和為:x+(10-x)=10,∴由表中數據可知人數最多的是年齡為14歲的,共有15人,合唱團總人數為30人,∴合唱團成員的年齡的中位數是14,眾數也是14,這兩個統計量不會隨著x的變化而變化.故選D.9、D【解析】

可以用排除法求解.【詳解】第一,根據科學記數法的形式可以排除A選項和C選項,B選項明顯不對,所以選D.【點睛】牢記科學記數法的規則是解決這一類題的關鍵.10、C【解析】

先根據平行線的性質得出∠CBE=∠E=60°,再根據三角形的外角性質求出∠C的度數即可.【詳解】∵BC∥DE,∴∠CBE=∠E=60°,∵∠A=35°,∠C+∠A=∠CBE,∴∠C=∠CBE﹣∠C=60°﹣35°=25°,故選C.【點睛】本題考查了平行線的性質、三角形外角的性質,熟練掌握三角形外角的性質是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、AB=AD(答案不唯一).【解析】已知OA=OC,OB=OD,可得四邊形ABCD是平行四邊形,再根據菱形的判定定理添加鄰邊相等或對角線垂直即可判定該四邊形是菱形.所以添加條件AB=AD或BC=CD或AC⊥BD,本題答案不唯一,符合條件即可.12、.【解析】解:如圖,連接AN,由題意知,BM⊥AA',BA=BA',∴AN=A'N,∴∠ANB=∠A'NB=45°,∵∠AMB=22.5°,∴∠MAN=∠ANB﹣∠AMB=22.5°=∠AMN,∴AN=MN=200米,在Rt△ABN中,∠ANB=45°,∴AB=AN=(米),故答案為.點睛:此題是解直角三角形的應用﹣﹣﹣仰角和俯角,主要考查了垂直平分線的性質,等腰三角形的性質,解本題的關鍵是求出∠ANB=45°.13、3.【解析】

可以先由韋達定理得出兩個關于、的式子,題目中的式子變形即可得出相應的與韋達定理相關的式子,即可求解.【詳解】得+=-2m-3,=m2,又因為,所以m2-2m-3=0,得m=3或m=-1,因為一元二次方程的兩個不相等的實數根,所以△>0,得(2m+3)2-4×m2=12m+9>0,所以m>,所以m=-1舍去,綜上m=3.【點睛】本題考查了根與系數的關系,將根與系數的關系與代數式相結合解題是解決本題的關鍵.14、1【解析】

根據概率的公式進行計算即可.【詳解】從5張上面分別寫著“加”“油”“向”“未”“來”這5個字的卡片中隨機抽取一張,則這張卡片上面恰好寫著“加”字的概率是15故答案為:15【點睛】考查概率的計算,明確概率的意義是解題的關鍵,概率等于所求情況數與總情況數的比.15、k≤.【解析】

分k=1及k≠1兩種情況考慮:當k=1時,通過解一元一次方程可得出原方程有解,即k=1符合題意;等k≠1時,由△≥1即可得出關于k的一元一次不等式,解之即可得出k的取值范圍.綜上此題得解.【詳解】當k=1時,原方程為-x+2=1,解得:x=2,∴k=1符合題意;當k≠1時,有△=[-(2k+1)]2-4k(k+2)≥1,解得:k≤且k≠1.綜上:k的取值范圍是k≤.故答案為:k≤.【點睛】本題考查了根的判別式以及一元二次方程的定義,分k=1及k≠1兩種情況考慮是解題的關鍵.16、<【解析】

∵≈0.62,0.62<1,∴<1;故答案為<.17、﹣1【解析】

∵OD=2AD,∴,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴,∴,∵S四邊形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=1,∴k=﹣1,故答案為﹣1.三、解答題(共7小題,滿分69分)18、-1,-9.【解析】

先去括號,再合并同類項;最后把x=-2代入即可.【詳解】原式=,當x=-2時,原式=-8-1=-9.【點睛】本題考查了整式的混合運算及化簡求值,關鍵是先按運算順序把整式化簡,再把對應字母的值代入求整式的值.19、3【解析】試題分析:本題考查了相似三角形的判定與性質,解直角三角形.由∠A=∠ACD,∠AOB=∠COD可證△ABO∽△CDO,從而BOCO=ABCD;再在Rt△ABC和Rt△BCD中分別求出解:∵∠ABC=∠BCD=90°,∴AB∥CD,∴∠A=∠ACD,∴△ABO∽△CDO,∴BOCO在Rt△ABC中,∠ABC=90°,∠A=45°,BC=1,∴AB=1.在Rt△BCD中,∠BCD=90°,∠D=30°,BC=1,∴CD=3,∴BOCO20、(1)見解析;(2)AC∥BD,理由見解析;(3)【解析】

(1)直接利用相似三角形的判定方法得出△BCE∽△DCP,進而得出答案;

(2)首先得出△PCE∽△DCB,進而求出∠ACB=∠CBD,即可得出AC與BD的位置關系;

(3)首先利用相似三角形的性質表示出BD,PM的長,進而根據三角形的面積公式得到△PBD的面積.【詳解】(1)證明:∵△BCE和△CDP均為等腰直角三角形,∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,∴△BCE∽△DCP,∴;(2)解:結論:AC∥BD,理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,∴∠PCE=∠BCD,又∵,∴△PCE∽△DCB,∴∠CBD=∠CEP=90°,∵∠ACB=90°,∴∠ACB=∠CBD,∴AC∥BD;(3)解:如圖所示:作PM⊥BD于M,∵AC=4,△ABC和△BEC均為等腰直角三角形,∴BE=CE=4,∵△PCE∽△DCB,∴,即,∴BD=,∵∠PBM=∠CBD﹣∠CBP=45°,BP=BE+PE=4+1=5,∴PM=5sin45°=∴△PBD的面積S=BD?PM=××=.【點睛】本題考查相似三角形的性質和判定,解題的關鍵是掌握相似三角形的性質和判定.21、(1).理由見解析;(2).【解析】

(1)根據得到∠A=∠PDA,根據線段垂直平分線的性質得到,利用,得到,于是得到結論;

(2)連接PE,設DE=x,則EB=ED=x,CE=8-x,根據勾股定理即可得到結論.【詳解】(1).理由如下,∵,∴,∵,∴,∵垂直平分,∴,∴,∴,∴,即.(2)連接,設,由(1)得,,又,,∵,∴,∴,解得,即.【點睛】本題考查了線段垂直平分線的性質,直角三角形的性質,勾股定理,正確的作出輔助線解題的關鍵.22、(1)AB與⊙O的位置關系是相切,證明見解析;(2)OA=1.【解析】

(1)先判斷AB與⊙O的位置關系,然后根據等腰三角形的性質即可解答本題;(2)根據題三角形的相似可以求得BD的長,從而可以得到OA的長.【詳解】解:(1)AB與⊙O的位置關系是相切,證明:如圖,連接OC.∵OA=OB,C為AB的中點,∴OC⊥AB.∴AB是⊙O的切線;(2)∵ED是直徑,∴∠ECD=90°.∴∠E+∠ODC=90°.又∵∠BCD+∠OCD=90°,∠OCD=∠ODC,∴∠BCD=∠E.又∵∠CBD=∠EBC,∴△BCD∽△BEC.∴.∴BC2=BD?BE.∵,∴.∴.設BD=x,則BC=2x.又BC2=BD?BE,∴(2x)2=x(x+6).解得x1=0,x2=2.∵BD=x>0,∴BD=2.∴OA=OB=BD+OD=2+3=1.【點睛】本題考查直線和圓的位置關系、等腰三角形的性質、三角形的相似,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.23、(1)見解析;(1)1【解析】

(1)根據角平分線的作圖可得;

(1)由等腰三角形的三線合一,結合E為AB邊的中點證EF為△ABD的中位線可得.【詳解】(1)如圖,射線CF即為所求;(1)∵∠CAD=∠CDA,∴AC=DC,即△CAD為等腰三角形;又CF是頂角∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論