




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年陜西省西安市長安區第二中學高考適應性考試數學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.為比較甲、乙兩名高二學生的數學素養,對課程標準中規定的數學六大素養進行指標測驗(指標值滿分為5分,分值高者為優),根據測驗情況繪制了如圖所示的六大素養指標雷達圖,則下面敘述正確的是()A.乙的數據分析素養優于甲B.乙的數學建模素養優于數學抽象素養C.甲的六大素養整體水平優于乙D.甲的六大素養中數據分析最差2.下列命題為真命題的個數是()(其中,為無理數)①;②;③.A.0 B.1 C.2 D.33.設是雙曲線的左、右焦點,若雙曲線右支上存在一點,使(為坐標原點),且,則雙曲線的離心率為()A. B. C. D.4.已知,是函數圖像上不同的兩點,若曲線在點,處的切線重合,則實數的最小值是()A. B. C. D.15.函數在上為增函數,則的值可以是()A.0 B. C. D.6.在四邊形中,,,,,,點在線段的延長線上,且,點在邊所在直線上,則的最大值為()A. B. C. D.7.已知雙曲線的一條漸近線經過圓的圓心,則雙曲線的離心率為()A. B. C. D.28.已知為一條直線,為兩個不同的平面,則下列說法正確的是()A.若,則 B.若,則C.若,則 D.若,則9.某三棱錐的三視圖如圖所示,那么該三棱錐的表面中直角三角形的個數為()A.1 B.2 C.3 D.010.窗花是貼在窗紙或窗戶玻璃上的剪紙,是中國古老的傳統民間藝術之一,它歷史悠久,風格獨特,神獸人們喜愛.下圖即是一副窗花,是把一個邊長為12的大正方形在四個角處都剪去邊長為1的小正方形后剩余的部分,然后在剩余部分中的四個角處再剪出邊長全為1的一些小正方形.若在這個窗花內部隨機取一個點,則該點不落在任何一個小正方形內的概率是()A. B. C. D.11.袋中裝有標號為1,2,3,4,5,6且大小相同的6個小球,從袋子中一次性摸出兩個球,記下號碼并放回,如果兩個號碼的和是3的倍數,則獲獎,若有5人參與摸球,則恰好2人獲獎的概率是()A. B. C. D.12.中國古代用算籌來進行記數,算籌的擺放形式有縱橫兩種形式(如圖所示),表示一個多位數時,像阿拉伯記數一樣,把各個數位的數碼從左到右排列,但各位數碼的籌式需要縱橫相間,其中個位、百位、方位……用縱式表示,十位、千位、十萬位……用橫式表示,則56846可用算籌表示為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在正方體中,為棱的中點,是棱上的點,且,則異面直線與所成角的余弦值為__________.14.已知△的三個內角為,,,且,,成等差數列,則的最小值為__________,最大值為___________.15.設常數,如果的二項展開式中項的系數為-80,那么______.16.某市高三理科學生有名,在一次調研測試中,數學成績服從正態分布,已知,若按成績分層抽樣的方式取份試卷進行分析,則應從分以上的試卷中抽取的份數為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)選修4-4:坐標系與參數方程在平面直角坐標系中,直線的參數方程為(為參數).以原點為極點,軸的正半軸為極軸建立極坐標系,且曲線的極坐標方程為.(1)寫出直線的普通方程與曲線的直角坐標方程;(2)設直線上的定點在曲線外且其到上的點的最短距離為,試求點的坐標.18.(12分)在平面直角坐標系中,曲線,曲線的參數方程為(為參數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系.(1)求曲線、的極坐標方程;(2)在極坐標系中,射線與曲線,分別交于、兩點(異于極點),定點,求的面積19.(12分)已知數列的前n項和為,且n、、成等差數列,.(1)證明數列是等比數列,并求數列的通項公式;(2)若數列中去掉數列的項后余下的項按原順序組成數列,求的值.20.(12分)已知函數,其導函數為,(1)若,求不等式的解集;(2)證明:對任意的,恒有.21.(12分)為了加強環保知識的宣傳,某學校組織了垃圾分類知識竟賽活動.活動設置了四個箱子,分別寫有“廚余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干張,每張卡片上寫有一種垃圾的名稱.每位參賽選手從所有卡片中隨機抽取張,按照自己的判斷將每張卡片放入對應的箱子中.按規則,每正確投放一張卡片得分,投放錯誤得分.比如將寫有“廢電池”的卡片放入寫有“有害垃圾”的箱子,得分,放入其它箱子,得分.從所有參賽選手中隨機抽取人,將他們的得分按照、、、、分組,繪成頻率分布直方圖如圖:(1)分別求出所抽取的人中得分落在組和內的人數;(2)從所抽取的人中得分落在組的選手中隨機選取名選手,以表示這名選手中得分不超過分的人數,求的分布列和數學期望.22.(10分)已知函數.(1)求函數的單調區間;(2)當時,如果方程有兩個不等實根,求實數t的取值范圍,并證明.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據題目所給圖像,填寫好表格,由表格數據選出正確選項.【詳解】根據雷達圖得到如下數據:數學抽象邏輯推理數學建模直觀想象數學運算數據分析甲454545乙343354由數據可知選C.【點睛】本題考查統計問題,考查數據處理能力和應用意識.2、C【解析】
對于①中,根據指數冪的運算性質和不等式的性質,可判定值正確的;對于②中,構造新函數,利用導數得到函數為單調遞增函數,進而得到,即可判定是錯誤的;對于③中,構造新函數,利用導數求得函數的最大值為,進而得到,即可判定是正確的.【詳解】由題意,對于①中,由,可得,根據不等式的性質,可得成立,所以是正確的;對于②中,設函數,則,所以函數為單調遞增函數,因為,則又由,所以,即,所以②不正確;對于③中,設函數,則,當時,,函數單調遞增,當時,,函數單調遞減,所以當時,函數取得最大值,最大值為,所以,即,即,所以是正確的.故選:C.【點睛】本題主要考查了不等式的性質,以及導數在函數中的綜合應用,其中解答中根據題意,合理構造新函數,利用導數求得函數的單調性和最值是解答的關鍵,著重考查了構造思想,以及推理與運算能力,屬于中檔試題.3、D【解析】
利用向量運算可得,即,由為的中位線,得到,所以,再根據雙曲線定義即可求得離心率.【詳解】取的中點,則由得,即;在中,為的中位線,所以,所以;由雙曲線定義知,且,所以,解得,故選:D【點睛】本題綜合考查向量運算與雙曲線的相關性質,難度一般.4、B【解析】
先根據導數的幾何意義寫出在兩點處的切線方程,再利用兩直線斜率相等且縱截距相等,列出關系樹,從而得出,令函數,結合導數求出最小值,即可選出正確答案.【詳解】解:當時,,則;當時,則.設為函數圖像上的兩點,當或時,,不符合題意,故.則在處的切線方程為;在處的切線方程為.由兩切線重合可知,整理得.不妨設則,由可得則當時,的最大值為.則在上單調遞減,則.故選:B.【點睛】本題考查了導數的幾何意義,考查了推理論證能力,考查了函數與方程、分類與整合、轉化與化歸等思想方法.本題的難點是求出和的函數關系式.本題的易錯點是計算.5、D【解析】
依次將選項中的代入,結合正弦、余弦函數的圖象即可得到答案.【詳解】當時,在上不單調,故A不正確;當時,在上單調遞減,故B不正確;當時,在上不單調,故C不正確;當時,在上單調遞增,故D正確.故選:D【點睛】本題考查正弦、余弦函數的單調性,涉及到誘導公式的應用,是一道容易題.6、A【解析】
依題意,如圖以為坐標原點建立平面直角坐標系,表示出點的坐標,根據求出的坐標,求出邊所在直線的方程,設,利用坐標表示,根據二次函數的性質求出最大值.【詳解】解:依題意,如圖以為坐標原點建立平面直角坐標系,由,,,,,,,因為點在線段的延長線上,設,解得,所在直線的方程為因為點在邊所在直線上,故設當時故選:【點睛】本題考查向量的數量積,關鍵是建立平面直角坐標系,屬于中檔題.7、B【解析】
求出圓心,代入漸近線方程,找到的關系,即可求解.【詳解】解:,一條漸近線,故選:B【點睛】利用的關系求雙曲線的離心率,是基礎題.8、D【解析】A.若,則或,故A錯誤;B.若,則或故B錯誤;C.若,則或,或與相交;D.若,則,正確.故選D.9、C【解析】
由三視圖還原原幾何體,借助于正方體可得三棱錐的表面中直角三角形的個數.【詳解】由三視圖還原原幾何體如圖,其中,,為直角三角形.∴該三棱錐的表面中直角三角形的個數為3.故選:C.【點睛】本小題主要考查由三視圖還原為原圖,屬于基礎題.10、D【解析】
由幾何概型可知,概率應為非小正方形面積與窗花面積的比,即可求解.【詳解】由題,窗花的面積為,其中小正方形的面積為,所以所求概率,故選:D【點睛】本題考查幾何概型的面積公式的應用,屬于基礎題.11、C【解析】
先確定摸一次中獎的概率,5個人摸獎,相當于發生5次試驗,根據每一次發生的概率,利用獨立重復試驗的公式得到結果.【詳解】從6個球中摸出2個,共有種結果,兩個球的號碼之和是3的倍數,共有摸一次中獎的概率是,5個人摸獎,相當于發生5次試驗,且每一次發生的概率是,有5人參與摸獎,恰好有2人獲獎的概率是,故選:.【點睛】本題主要考查了次獨立重復試驗中恰好發生次的概率,考查獨立重復試驗的概率,解題時主要是看清摸獎5次,相當于做了5次獨立重復試驗,利用公式做出結果,屬于中檔題.12、B【解析】
根據題意表示出各位上的數字所對應的算籌即可得答案.【詳解】解:根據題意可得,各個數碼的籌式需要縱橫相間,個位,百位,萬位用縱式表示;十位,千位,十萬位用橫式表示,用算籌表示應為:縱5橫6縱8橫4縱6,從題目中所給出的信息找出對應算籌表示為中的.故選:.【點睛】本題主要考查學生的合情推理與演繹推理,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據題意畫出幾何題,建立空間直角坐標系,寫個各個點的坐標,并求得.由空間向量的夾角求法即可求得異面直線與所成角的余弦值.【詳解】根據題意畫出幾何圖形,以為原點建立空間直角坐標系:設正方體的棱長為1,則所以所以,所以異面直線與所成角的余弦值為,故答案為:.【點睛】本題考查了異面直線夾角的求法,利用空間向量求異面直線夾角,屬于中檔題.14、【解析】
根據正弦定理可得,利用余弦定理以及均值不等式,可得角的范圍,然后構造函數,利用導數,研究函數性質,可得結果.【詳解】由,,成等差數列所以所以又化簡可得當且僅當時,取等號又,所以令,則當,即時,當,即時,則在遞增,在遞減所以由,所以所以的最小值為最大值為故答案為:,【點睛】本題考查等差數列、正弦定理、余弦定理,還考查了不等式、導數的綜合應用,難點在于根據余弦定理以及不等式求出,考驗分析能力以及邏輯思維能力,屬難題.15、【解析】
利用二項式定理的通項公式即可得出.【詳解】的二項展開式的通項公式:,令,解得.∴,解得.故答案為:-2.【點睛】本小題主要考查根據二項式展開式的系數求參數,屬于基礎題.16、【解析】
由題意結合正態分布曲線可得分以上的概率,乘以可得.【詳解】解:,所以應從分以上的試卷中抽取份.故答案為:.【點睛】本題考查正態分布曲線,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)的普通方程為.的直角坐標方程為(2)(-1,0)或(2,3)【解析】
(1)對直線的參數方程消參數即可求得直線的普通方程,對整理并兩邊乘以,結合,即可求得曲線的直角坐標方程。(2)由(1)得:曲線C是以Q(1,1)為圓心,為半徑的圓,設點P的坐標為,由題可得:,利用兩點距離公式列方程即可求解?!驹斀狻拷猓海?)由消去參數,得.即直線的普通方程為.因為又,∴曲線的直角坐標方程為(2)由知,曲線C是以Q(1,1)為圓心,為半徑的圓設點P的坐標為,則點P到上的點的最短距離為|PQ|即,整理得,解得所以點P的坐標為(-1,0)或(2,3)【點睛】本題主要考查了參數方程化為普通方程及極坐標方程化為直角坐標方程,還考查了轉化思想及兩點距離公式,考查了方程思想及計算能力,屬于中檔題。18、(1),;(2).【解析】
(1)先把參數方程化成普通方程,再利用極坐標的公式把普通方程化成極坐標方程;(2)先利用極坐標求出弦長,再求高,最后求的面積.【詳解】(1)曲線的極坐標方程為:,因為曲線的普通方程為:,曲線的極坐標方程為;(2)由(1)得:點的極坐標為,點的極坐標為,,點到射線的距離為的面積為.【點睛】本題考查普通方程、參數方程與極坐標方程之間的互化,同時也考查了利用極坐標方程求解面積問題,考查計算能力,屬于中等題.19、(1)證明見解析,;(2)11202.【解析】
(1)由n,,成等差數列,可得,,兩式相減,由等比數列的定義可得是等比數列,可求數列的通項公式;(2)由(1)中的可求出,根據和求出數列,中的公共項,分組求和,結合等比數列和等差數列的求和公式,可得答案.【詳解】(1)證明:因為n,,成等差數列,所以,①所以.②①-②,得,所以.又當時,,所以,所以,故數列是首項為2,公比為2的等比數列,所以,即.(2)根據(1)求解知,,,所以,所以數列是以1為首項,2為公差的等差數列.又因為,,,,,,,,,,,所以.【點睛】本題考查等比數列的定義,考查分組求和,屬于中檔題.20、(1)(2)證明見解析【解析】
(1)求出的導數,根據導函數的性質判斷函數的單調性,再利用函數單調性解函數型不等式;(2)構造函數,利用導數判斷在區間上單調遞減,結合可得結果.【詳解】(1)若,則.設,則,所以在上單調遞減,在上單調遞增.又當時,;當時,;當時,,所以所以在上單調遞增,又,所以不等式的解集為.(2)設,再令,,在上單調遞減,又,,,,,.即【點睛】本題考查利用函數的導數來判斷函數的單調性,再利用函數的單調性來解決不等式問題,屬于較難題.21、(1)所抽取的人中得分落在組和內的人數分別為人、人;(2)分布列見解析,.【解析】
(1)將分別乘以區間、對應的矩形面積可得出結果;(2)由題可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工業互聯網平臺2025年網絡安全態勢感知技術安全防護體系優化與升級報告
- 2025年金融租賃公司業務模式創新與風險管理策略實施路徑優化報告
- 行政管理的經濟法熱點問題試題及答案
- 2025年工程項目管理必考試題及答案
- 2025年食品行業食品安全追溯體系與食品安全溯源數據共享研究報告
- 水利水電工程熱點及難點試題及答案
- 水利水電工程的公共關系管理與試題及答案
- 城市公共交通系統的綜合管理試題及答案
- 2025年工程項目管理挑戰試題及答案
- 高效應試技巧試題及答案分享
- 23.《海底世界》課件
- 2025年醫療行業反壟斷監管政策變化與合規經營關鍵指引報告
- 礦產資源開采與銷售協議
- 《支氣管鏡檢查技術》課件
- 育肥豬考試試題及答案
- 寫作技巧知識培訓課件
- 2025年度教師資格證考試綜合素質必考250個重點知識匯編
- 2025年中考數學三輪沖刺訓練一次函數中幾何壓軸題綜合訓練
- 中考英語詞匯電子版單選題100道及答案
- 2025年中考政治總復習必考重點知識復習提綱
- 屋面防水及改造工程投標方案(技術方案)
評論
0/150
提交評論