




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省普寧市勤建學校2024年高考數學押題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.甲、乙兩名學生的六次數學測驗成績(百分制)的莖葉圖如圖所示.①甲同學成績的中位數大于乙同學成績的中位數;②甲同學的平均分比乙同學的平均分高;③甲同學的平均分比乙同學的平均分低;④甲同學成績的方差小于乙同學成績的方差.以上說法正確的是()A.③④ B.①② C.②④ D.①③④2.是定義在上的增函數,且滿足:的導函數存在,且,則下列不等式成立的是()A. B.C. D.3.如圖,點E是正方體ABCD-A1B1C1D1的棱DD1的中點,點F,M分別在線段AC,BD1(不包含端點)上運動,則()A.在點F的運動過程中,存在EF//BC1B.在點M的運動過程中,不存在B1M⊥AEC.四面體EMAC的體積為定值D.四面體FA1C1B的體積不為定值4.已知f(x),g(x)都是偶函數,且在[0,+∞)上單調遞增,設函數F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a>0,則()A.F(-a)≥F(a)且F(1+a)≥F(1-a)B.F(-a)≥F(a)且F(1+a)≤F(1-a)C.F(-a)≤F(a)且F(1+a)≥F(1-a)D.F(-a)≤F(a)且F(1+a)≤F(1-a)5.的展開式中各項系數的和為2,則該展開式中常數項為A.-40 B.-20 C.20 D.406.已知集合,,則A. B. C. D.7.已知下列命題:①“”的否定是“”;②已知為兩個命題,若“”為假命題,則“”為真命題;③“”是“”的充分不必要條件;④“若,則且”的逆否命題為真命題.其中真命題的序號為()A.③④ B.①② C.①③ D.②④8.已知函數,,的零點分別為,,,則()A. B.C. D.9.已知函數,,若成立,則的最小值為()A.0 B.4 C. D.10.已知函數,為的零點,為圖象的對稱軸,且在區間上單調,則的最大值是()A. B. C. D.11.已知函數,若對任意,都有成立,則實數的取值范圍是()A. B. C. D.12.若時,,則的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設等差數列的前項和為,若,,則數列的公差________,通項公式________.14.已知,滿足約束條件則的最大值為__________.15.已知函數,若函數有個不同的零點,則的取值范圍是___________.16.數列的前項和為,則數列的前項和_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數.(1)求的值;(2)若,求函數的單調遞減區間.18.(12分)已知橢圓的短軸的兩個端點分別為、,焦距為.(1)求橢圓的方程;(2)已知直線與橢圓有兩個不同的交點、,設為直線上一點,且直線、的斜率的積為.證明:點在軸上.19.(12分)已知直線的參數方程為(為參數),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程及曲線的直角坐標方程;(2)設點,直線與曲線交于兩點,求的值.20.(12分)如圖,在四棱錐中,底面,,,,,點為棱的中點.(1)證明::(2)求直線與平面所成角的正弦值;(3)若為棱上一點,滿足,求二面角的余弦值.21.(12分)已知三點在拋物線上.(Ⅰ)當點的坐標為時,若直線過點,求此時直線與直線的斜率之積;(Ⅱ)當,且時,求面積的最小值.22.(10分)在平面直角坐標系xOy中,曲線的參數方程為(為參數).以平面直角坐標系的原點為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求曲線的極坐標方程;(2)設和交點的交點為,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
由莖葉圖中數據可求得中位數和平均數,即可判斷①②③,再根據數據集中程度判斷④.【詳解】由莖葉圖可得甲同學成績的中位數為,乙同學成績的中位數為,故①錯誤;,,則,故②錯誤,③正確;顯然甲同學的成績更集中,即波動性更小,所以方差更小,故④正確,故選:A【點睛】本題考查由莖葉圖分析數據特征,考查由莖葉圖求中位數、平均數.2、D【解析】
根據是定義在上的增函數及有意義可得,構建新函數,利用導數可得為上的增函數,從而可得正確的選項.【詳解】因為是定義在上的增函數,故.又有意義,故,故,所以.令,則,故在上為增函數,所以即,整理得到.故選:D.【點睛】本題考查導數在函數單調性中的應用,一般地,數的大小比較,可根據數的特點和題設中給出的原函數與導數的關系構建新函數,本題屬于中檔題.3、C【解析】
采用逐一驗證法,根據線線、線面之間的關系以及四面體的體積公式,可得結果.【詳解】A錯誤由平面,//而與平面相交,故可知與平面相交,所以不存在EF//BC1B錯誤,如圖,作由又平面,所以平面又平面,所以由//,所以,平面所以平面,又平面所以,所以存在C正確四面體EMAC的體積為其中為點到平面的距離,由//,平面,平面所以//平面,則點到平面的距離即點到平面的距離,所以為定值,故四面體EMAC的體積為定值錯誤由//,平面,平面所以//平面,則點到平面的距離即為點到平面的距離,所以為定值所以四面體FA1C1B的體積為定值故選:C【點睛】本題考查線面、線線之間的關系,考驗分析能力以及邏輯推理能力,熟練線面垂直與平行的判定定理以及性質定理,中檔題.4、A【解析】試題分析:由題意得,F(x)=2g(1-x),f(x)≥g(1-x)∴F(-a)=2g(1+a),f(a)=f(-a)≥g(1+a)2f(-a),f(a)=f(-a)<g(1+a),∵a>0,∴(a+1)2-(a-1)∴若f(a)>g(1+a):F(-a)=2g(1+a),F(a)=2g(1-a),∴F(-a)>F(a),若g(1-a)≤f(a)≤g(1+a):F(-a)=2f(-a)=2f(a),F(a)=2g(1-a),∴F(-a)≥F(a),若f(a)<g(1-a):F(-a)=2f(-a)=2f(a),F(a)=2f(a),∴F(-a)=F(a),綜上可知F(-a)≥F(a),同理可知F(1+a)≥F(1-a),故選A.考點:1.函數的性質;2.分類討論的數學思想.【思路點睛】本題在在解題過程中抓住偶函數的性質,避免了由于單調性不同導致1-a與1+a大小不明確的討論,從而使解題過程得以優化,另外,不要忘記定義域,如果要研究奇函數或者偶函數的值域、最值、單調性等問題,通常先在原點一側的區間(對奇(偶)函數而言)或某一周期內(對周期函數而言)考慮,然后推廣到整個定義域上.5、D【解析】令x=1得a=1.故原式=.的通項,由5-2r=1得r=2,對應的常數項=80,由5-2r=-1得r=3,對應的常數項=-40,故所求的常數項為40,選D解析2.用組合提取法,把原式看做6個因式相乘,若第1個括號提出x,從余下的5個括號中選2個提出x,選3個提出;若第1個括號提出,從余下的括號中選2個提出,選3個提出x.故常數項==-40+80=406、C【解析】分析:根據集合可直接求解.詳解:,,故選C點睛:集合題也是每年高考的必考內容,一般以客觀題形式出現,一般解決此類問題時要先將參與運算的集合化為最簡形式,如果是“離散型”集合可采用Venn圖法解決,若是“連續型”集合則可借助不等式進行運算.7、B【解析】
由命題的否定,復合命題的真假,充分必要條件,四種命題的關系對每個命題進行判斷.【詳解】“”的否定是“”,正確;已知為兩個命題,若“”為假命題,則“”為真命題,正確;“”是“”的必要不充分條件,錯誤;“若,則且”是假命題,則它的逆否命題為假命題,錯誤.故選:B.【點睛】本題考查命題真假判斷,掌握四種命題的關系,復合命題的真假判斷,充分必要條件等概念是解題基礎.8、C【解析】
轉化函數,,的零點為與,,的交點,數形結合,即得解.【詳解】函數,,的零點,即為與,,的交點,作出與,,的圖象,如圖所示,可知故選:C【點睛】本題考查了數形結合法研究函數的零點,考查了學生轉化劃歸,數形結合的能力,屬于中檔題.9、A【解析】
令,進而求得,再轉化為函數的最值問題即可求解.【詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【點睛】本題主要考查了導數在研究函數最值中的應用,考查了轉化的數學思想,恰當的用一個未知數來表示和是本題的關鍵,屬于中檔題.10、B【解析】
由題意可得,且,故有①,再根據,求得②,由①②可得的最大值,檢驗的這個值滿足條件.【詳解】解:函數,,為的零點,為圖象的對稱軸,,且,、,,即為奇數①.在,單調,,②.由①②可得的最大值為1.當時,由為圖象的對稱軸,可得,,故有,,滿足為的零點,同時也滿足滿足在上單調,故為的最大值,故選:B.【點睛】本題主要考查正弦函數的圖象的特征,正弦函數的周期性以及它的圖象的對稱性,屬于中檔題.11、D【解析】
先將所求問題轉化為對任意恒成立,即得圖象恒在函數圖象的上方,再利用數形結合即可解決.【詳解】由得,由題意函數得圖象恒在函數圖象的上方,作出函數的圖象如圖所示過原點作函數的切線,設切點為,則,解得,所以切線斜率為,所以,解得.故選:D.【點睛】本題考查導數在不等式恒成立中的應用,考查了學生轉化與化歸思想以及數形結合的思想,是一道中檔題.12、D【解析】
由題得對恒成立,令,然后分別求出即可得的取值范圍.【詳解】由題得對恒成立,令,在單調遞減,且,在上單調遞增,在上單調遞減,,又在單調遞增,,的取值范圍為.故選:D【點睛】本題主要考查了不等式恒成立問題,導數的綜合應用,考查了轉化與化歸的思想.求解不等式恒成立問題,可采用參變量分離法去求解.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
直接利用等差數列公式計算得到答案.【詳解】,,解得,,故.故答案為:2;.【點睛】本題考查了等差數列的基本計算,意在考查學生的計算能力.14、1【解析】
先畫出約束條件的可行域,根據平移法判斷出最優點,代入目標函數的解析式,易可得到目標函數的最大值.【詳解】解:由約束條件得如圖所示的三角形區域,由于,則,要求的最大值,則求的截距的最小值,顯然當平行直線過點時,取得最大值為:.故答案為:1.【點睛】本題考查線性規劃求最值問題,我們常用幾何法求最值.15、【解析】
作出函數的圖象及直線,如下圖所示,因為函數有個不同的零點,所以由圖象可知,,,所以.16、【解析】
解:兩式作差,得,經過檢驗得出數列的通項公式,進而求得的通項公式,裂項相消求和即可.【詳解】解:兩式作差,得化簡得,檢驗:當n=1時,,所以數列是以2為首項,2為公比的等比數列;,,令故填:.【點睛】本題考查求數列的通項公式,裂項相消求數列的前n項和,解題過程中需要注意n的范圍以及對特殊項的討論,側重考查運算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)的遞減區間為和【解析】
(1)化簡函數,代入,計算即可;(2)先利用正弦函數的圖象與性質求出函數的單調遞減區間,再結合即可求出.【詳解】(1),從而.(2)令.解得.即函數的所有減區間為,考慮到,取,可得,,故的遞減區間為和.【點睛】本題主要考查了三角函數的恒等變形,正弦函數的圖象與性質,屬于中檔題.18、(1);(2)見解析.【解析】
(1)由已知條件得出、的值,進而可得出的值,由此可求得橢圓的方程;(2)設點,可得,且,,求出直線的斜率,進而可求得直線與的方程,將直線直線與的方程聯立,求出點的坐標,即可證得結論.【詳解】(1)由題設,得,所以,即.故橢圓的方程為;(2)設,則,,.所以直線的斜率為,因為直線、的斜率的積為,所以直線的斜率為.直線的方程為,直線的方程為.聯立,解得點的縱坐標為.因為點在橢圓上,所以,則,所以點在軸上.【點睛】本題考查橢圓方程的求解,同時也考查了點在定直線的證明,考查計算能力與推理能力,屬于中等題.19、(1);(2)【解析】
(1)直接利用轉換關系的應用,把參數方程極坐標方程和直角坐標方程之間進行轉換.(2)利用(1)的結論,進一步利用一元二次方程根和系數的關系式的應用求出結果.【詳解】解:(1)直線的參數方程為(為參數),轉換為直角坐標方程為.曲線的極坐標方程為.轉換為,轉換為直角坐標方程為.(2)直線的參數方程為(為參數),轉換為標準式為(為參數),代入圓的直角坐標方程整理得,所以,..【點睛】本題屬于基礎本題考查的知識要點:主要考查極坐標,參數方程與普通方程互化,及求三角形面積.需要熟記極坐標系與參數方程的公式,及與解析幾何相關的直線與曲線位置關系的一些解題思路.20、(1)證明見解析(2)(3)【解析】
(1)根據題意以為坐標原點,建立空間直角坐標系,寫出各個點的坐標,并表示出,由空間向量數量積運算即可證明.(2)先求得平面的法向量,即可求得直線與平面法向量夾角的余弦值,即為直線與平面所成角的正弦值;(3)由點在棱上,設,再由,結合,由空間向量垂直的坐標關系求得的值.即可表示出.求得平面和平面的法向量,由空間向量數量積的運算求得兩個平面夾角的余弦值,再根據二面角的平面角為銳角即可確定二面角的余弦值.【詳解】(1)證明:∵底面,,以為坐標原點,建立如圖所示的空間直角坐標系,∵,,點為棱的中點.∴,,,,,,.(2),設平面的法向量為.則,代入可得,令解得,即,設直線與平面所成角為,由直線與平面夾角可知所以直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廈門石雕石欄桿施工方案
- 紙質航空航天材料開發與性能評價考核試卷
- 中國橋梁施工方案設計
- 農業經理人考試的必考知識模塊試題及答案
- 生物質燃氣的可行性研究與市場潛力評估考核試卷
- 生物質燃氣的風能利用技術考核試卷
- 電熱電蚊香液消耗速率考核試卷
- 礦山機械電子商城與網絡營銷考核試卷
- 2024年項目管理考試題型分析試題及答案
- 資格認證考試實戰模擬的重要性試題及答案
- FBS-GC-001-分布式光伏施工日志
- 混凝土組織供應運輸售后服務方案
- 成人體驗館管理制度
- 馬克思的生平
- 慢性鼻竇炎的中醫護理查房課件
- 生理學面部肌膚皮膚管理基礎知識護膚種類介紹培訓成品模板兩篇
- 駕校訓練場地安全生產檢查表
- (完整版)混凝土樁鉆芯法檢測題庫
- 稅務行政執法證據淺析
- 氬弧焊接施工方案
- 排拉表標準格式
評論
0/150
提交評論