2024屆安徽省安慶五校聯盟高三下學期第六次檢測數學試卷含解析_第1頁
2024屆安徽省安慶五校聯盟高三下學期第六次檢測數學試卷含解析_第2頁
2024屆安徽省安慶五校聯盟高三下學期第六次檢測數學試卷含解析_第3頁
2024屆安徽省安慶五校聯盟高三下學期第六次檢測數學試卷含解析_第4頁
2024屆安徽省安慶五校聯盟高三下學期第六次檢測數學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆安徽省安慶五校聯盟高三下學期第六次檢測數學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知全集,函數的定義域為,集合,則下列結論正確的是A. B.C. D.2.已知函數的導函數為,記,,…,N.若,則()A. B. C. D.3.對于函數,若滿足,則稱為函數的一對“線性對稱點”.若實數與和與為函數的兩對“線性對稱點”,則的最大值為()A. B. C. D.4.將函數圖象上每一點的橫坐標變為原來的2倍,再將圖像向左平移個單位長度,得到函數的圖象,則函數圖象的一個對稱中心為()A. B. C. D.5.已知,,,則,,的大小關系為()A. B. C. D.6.五名志愿者到三個不同的單位去進行幫扶,每個單位至少一人,則甲、乙兩人不在同一個單位的概率為()A. B. C. D.7.函數與的圖象上存在關于直線對稱的點,則的取值范圍是()A. B. C. D.8.中,角的對邊分別為,若,,,則的面積為()A. B. C. D.9.2019年末,武漢出現新型冠狀病毒肺炎()疫情,并快速席卷我國其他地區,傳播速度很快.因這種病毒是以前從未在人體中發現的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大.武漢市出現疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發熱患者和與確診患者的密切接觸者等“四類”人員,強化網格化管理,不落一戶、不漏一人.在排查期間,一戶6口之家被確認為“與確診患者的密切接觸者”,這種情況下醫護人員要對其家庭成員隨機地逐一進行“核糖核酸”檢測,若出現陽性,則該家庭為“感染高危戶”.設該家庭每個成員檢測呈陽性的概率均為()且相互獨立,該家庭至少檢測了5個人才能確定為“感染高危戶”的概率為,當時,最大,則()A. B. C. D.10.己知函數若函數的圖象上關于原點對稱的點有2對,則實數的取值范圍是()A. B. C. D.11.偶函數關于點對稱,當時,,求()A. B. C. D.12.已知拋物線:,點為上一點,過點作軸于點,又知點,則的最小值為()A. B. C.3 D.5二、填空題:本題共4小題,每小題5分,共20分。13.設,則______.14.如圖,養殖公司欲在某湖邊依托互相垂直的湖岸線、圍成一個三角形養殖區.為了便于管理,在線段之間有一觀察站點,到直線,的距離分別為8百米、1百米,則觀察點到點、距離之和的最小值為______________百米.15.設第一象限內的點(x,y)滿足約束條件,若目標函數z=ax+by(a>0,b>0)的最大值為40,則+的最小值為_____.16.展開式中,含項的系數為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某大型單位舉行了一次全體員工都參加的考試,從中隨機抽取了20人的分數.以下莖葉圖記錄了他們的考試分數(以十位數字為莖,個位數字為葉):若分數不低于95分,則稱該員工的成績為“優秀”.(1)從這20人中任取3人,求恰有1人成績“優秀”的概率;(2)根據這20人的分數補全下方的頻率分布表和頻率分布直方圖,并根據頻率分布直方圖解決下面的問題.組別分組頻數頻率1234①估計所有員工的平均分數(同一組中的數據用該組區間的中點值作代表);②若從所有員工中任選3人,記表示抽到的員工成績為“優秀”的人數,求的分布列和數學期望.18.(12分)設函數,,其中,為正實數.(1)若的圖象總在函數的圖象的下方,求實數的取值范圍;(2)設,證明:對任意,都有.19.(12分)的內角的對邊分別為,且.(1)求;(2)若,點為邊的中點,且,求的面積.20.(12分)在中,角的對邊分別為,且.(1)求角的大小;(2)若函數圖象的一條對稱軸方程為且,求的值.21.(12分)已知橢圓:(),四點,,,中恰有三點在橢圓上.(1)求橢圓的方程;(2)設橢圓的左右頂點分別為.是橢圓上異于的動點,求的正切的最大值.22.(10分)已知函數,.(1)若時,解不等式;(2)若關于的不等式在上有解,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

求函數定義域得集合M,N后,再判斷.【詳解】由題意,,∴.故選A.【點睛】本題考查集合的運算,解題關鍵是確定集合中的元素.確定集合的元素時要注意代表元形式,集合是函數的定義域,還是函數的值域,是不等式的解集還是曲線上的點集,都由代表元決定.2、D【解析】

通過計算,可得,最后計算可得結果.【詳解】由題可知:所以所以猜想可知:由所以所以故選:D【點睛】本題考查導數的計算以及不完全歸納法的應用,選擇題、填空題可以使用取特殊值,歸納猜想等方法的使用,屬中檔題.3、D【解析】

根據已知有,可得,只需求出的最小值,根據,利用基本不等式,得到的最小值,即可得出結論.【詳解】依題意知,與為函數的“線性對稱點”,所以,故(當且僅當時取等號).又與為函數的“線性對稱點,所以,所以,從而的最大值為.故選:D.【點睛】本題以新定義為背景,考查指數函數的運算和圖像性質、基本不等式,理解新定義含義,正確求出的表達式是解題的關鍵,屬于中檔題.4、D【解析】

根據函數圖象的變換規律可得到解析式,然后將四個選項代入逐一判斷即可.【詳解】解:圖象上每一點的橫坐標變為原來的2倍,得到再將圖像向左平移個單位長度,得到函數的圖象,故選:D【點睛】考查三角函數圖象的變換規律以及其有關性質,基礎題.5、D【解析】

構造函數,利用導數求得的單調區間,由此判斷出的大小關系.【詳解】依題意,得,,.令,所以.所以函數在上單調遞增,在上單調遞減.所以,且,即,所以.故選:D.【點睛】本小題主要考查利用導數求函數的單調區間,考查化歸與轉化的數學思想方法,考查對數式比較大小,屬于中檔題.6、D【解析】

三個單位的人數可能為2,2,1或3,1,1,求出甲、乙兩人在同一個單位的概率,利用互為對立事件的概率和為1即可解決.【詳解】由題意,三個單位的人數可能為2,2,1或3,1,1;基本事件總數有種,若為第一種情況,且甲、乙兩人在同一個單位,共有種情況;若為第二種情況,且甲、乙兩人在同一個單位,共有種,故甲、乙兩人在同一個單位的概率為,故甲、乙兩人不在同一個單位的概率為.故選:D.【點睛】本題考查古典概型的概率公式的計算,涉及到排列與組合的應用,在正面情況較多時,可以先求其對立事件,即甲、乙兩人在同一個單位的概率,本題有一定難度.7、C【解析】

由題可知,曲線與有公共點,即方程有解,可得有解,令,則,對分類討論,得出時,取得極大值,也即為最大值,進而得出結論.【詳解】解:由題可知,曲線與有公共點,即方程有解,即有解,令,則,則當時,;當時,,故時,取得極大值,也即為最大值,當趨近于時,趨近于,所以滿足條件.故選:C.【點睛】本題主要考查利用導數研究函數性質的基本方法,考查化歸與轉化等數學思想,考查抽象概括、運算求解等數學能力,屬于難題.8、A【解析】

先求出,由正弦定理求得,然后由面積公式計算.【詳解】由題意,.由得,.故選:A.【點睛】本題考查求三角形面積,考查正弦定理,同角間的三角函數關系,兩角和的正弦公式與誘導公式,解題時要根據已知求值要求確定解題思路,確定選用公式順序,以便正確快速求解.9、A【解析】

根據題意分別求出事件A:檢測5個人確定為“感染高危戶”發生的概率和事件B:檢測6個人確定為“感染高危戶”發生的概率,即可得出的表達式,再根據基本不等式即可求出.【詳解】設事件A:檢測5個人確定為“感染高危戶”,事件B:檢測6個人確定為“感染高危戶”,∴,.即設,則∴當且僅當即時取等號,即.故選:A.【點睛】本題主要考查概率的計算,涉及相互獨立事件同時發生的概率公式的應用,互斥事件概率加法公式的應用,以及基本不等式的應用,解題關鍵是對題意的理解和事件的分解,意在考查學生的數學運算能力和數學建模能力,屬于較難題.10、B【解析】

考慮當時,有兩個不同的實數解,令,則有兩個不同的零點,利用導數和零點存在定理可得實數的取值范圍.【詳解】因為的圖象上關于原點對稱的點有2對,所以時,有兩個不同的實數解.令,則在有兩個不同的零點.又,當時,,故在上為增函數,在上至多一個零點,舍.當時,若,則,在上為增函數;若,則,在上為減函數;故,因為有兩個不同的零點,所以,解得.又當時,且,故在上存在一個零點.又,其中.令,則,當時,,故為減函數,所以即.因為,所以在上也存在一個零點.綜上,當時,有兩個不同的零點.故選:B.【點睛】本題考查函數的零點,一般地,較為復雜的函數的零點,必須先利用導數研究函數的單調性,再結合零點存在定理說明零點的存在性,本題屬于難題.11、D【解析】

推導出函數是以為周期的周期函數,由此可得出,代值計算即可.【詳解】由于偶函數的圖象關于點對稱,則,,,則,所以,函數是以為周期的周期函數,由于當時,,則.故選:D.【點睛】本題考查利用函數的對稱性和奇偶性求函數值,推導出函數的周期性是解答的關鍵,考查推理能力與計算能力,屬于中等題.12、C【解析】

由,再運用三點共線時和最小,即可求解.【詳解】.故選:C【點睛】本題考查拋物線的定義,合理轉化是本題的關鍵,注意拋物線的性質的靈活運用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、121【解析】

在所給的等式中令,,令,可得2個等式,再根據所得的2個等式即可解得所求.【詳解】令,得,令,得,兩式相加,得,所以.故答案為:.【點睛】本題主要考查二項式定理的應用,考查學生分析問題的能力,屬于基礎題,難度較易.14、【解析】

建系,將直線用方程表示出來,再用參數表示出線段的長度,最后利用導數來求函數最小值.【詳解】以為原點,所在直線分別作為軸,建立平面直角坐標系,則.設直線,即,則,所以,所以,,則,則,當時,,則單調遞減,當時,,則單調遞增,所以當時,最短,此時.故答案為:【點睛】本題考查導數的實際應用,屬于中檔題.15、【解析】不等式表示的平面區域陰影部分,當直線ax+by=z(a>0,b>0)過直線x?y+2=0與直線2x?y?6=0的交點(8,10)時,目標函數z=ax+by(a>0,b>0)取得最大40,即8a+10b=40,即4a+5b=20,而當且僅當時取等號,則的最小值為.16、2【解析】

變換得到,展開式的通項為,計算得到答案.【詳解】,的展開式的通項為:.含項的系數為:.故答案為:.【點睛】本題考查了二項式定理的應用,意在考查學生的計算能力和應用能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)①82,②分布列見解析,【解析】

(1)從20人中任取3人共有種結果,恰有1人成績“優秀”共有種結果,利用古典概型的概率計算公式計算即可;(2)①平均數的估計值為各小矩形的組中值與其面積乘積的和;②要注意服從的是二項分布,不是超幾何分布,利用二項分布的分布列及期望公式求解即可.【詳解】(1)設從20人中任取3人恰有1人成績“優秀”為事件,則,所以,恰有1人“優秀”的概率為.(2)組別分組頻數頻率120.01260.03380.04440.02①,估計所有員工的平均分為82②的可能取值為0、1、2、3,隨機選取1人是“優秀”的概率為,∴;;;;∴的分布列為0123∵,∴數學期望.【點睛】本題考查古典概型的概率計算以及二項分布期望的問題,涉及到頻率分布直方圖、平均數的估計值等知識,是一道容易題.18、(1)(2)證明見解析【解析】

(1)據題意可得在區間上恒成立,利用導數討論函數的單調性,從而求出滿足不等式的的取值范圍;(2)不等式整理為,由(1)可知當時,,利用導數判斷函數的單調性從而證明在區間上成立,從而證明對任意,都有.【詳解】(1)解:因為函數的圖象恒在的圖象的下方,所以在區間上恒成立.設,其中,所以,其中,.①當,即時,,所以函數在上單調遞增,,故成立,滿足題意.②當,即時,設,則圖象的對稱軸,,,所以在上存在唯一實根,設為,則,,,所以在上單調遞減,此時,不合題意.綜上可得,實數的取值范圍是.(2)證明:由題意得,因為當時,,,所以.令,則,所以在上單調遞增,,即,所以,從而.由(1)知當時,在上恒成立,整理得.令,則要證,只需證.因為,所以在上單調遞增,所以,即在上恒成立.綜上可得,對任意,都有成立.【點睛】本題考查導數在研究函數中的作用,利用導數判斷函數單調性與求函數最值,利用導數證明不等式,屬于難題.19、(1);(2).【解析】

(1)利用正弦定理邊化角,再利用余弦定理求解即可.(2)為為的中線,所以再平方后利用向量的數量積公式進行求解,再代入可解得,再代入面積公式求解即可.【詳解】(1)由,可得,由余弦定理可得,故.(2)因為為的中線,所以,兩邊同時平方可得,故.因為,所以.所以的面積.【點睛】本題主要考查了利用正余弦定理與面積公式求解三角形的問題,同時也考查了向量在解三角形中的運用,屬于中檔題.20、(1)(2)【解析】

(1)由已知利用三角函數恒等變換的應用,正弦定理可求,即可求的值.(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論