




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年吉林省農安縣三崗中學中考數學考前最后一卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,BD是∠ABC的角平分線,DC∥AB,下列說法正確的是()A.BC=CD B.AD∥BCC.AD=BC D.點A與點C關于BD對稱2.如圖,將△ABC繞點B順時針旋轉60°得△DBE,點C的對應點E恰好落在AB延長線上,連接AD.下列結論一定正確的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC3.定義:若點P(a,b)在函數y=1x的圖象上,將以a為二次項系數,b為一次項系數構造的二次函數y=ax2+bx稱為函數y=1x的一個“派生函數”.例如:點(2,12)在函數y=1x的圖象上,則函數y=2x2+(1)存在函數y=1x(2)函數y=1xA.命題(1)與命題(2)都是真命題B.命題(1)與命題(2)都是假命題C.命題(1)是假命題,命題(2)是真命題D.命題(1)是真命題,命題(2)是假命題4.如圖,在⊙O中,弦BC=1,點A是圓上一點,且∠BAC=30°,則的長是()A.π B. C. D.5.在同一平面直角坐標系中,函數y=x+k與(k為常數,k≠0)的圖象大致是()A. B.C. D.6.(2011貴州安順,4,3分)我市某一周的最高氣溫統計如下表:最高氣溫(℃)
25
26
27
28
天數
1
1
2
3
則這組數據的中位數與眾數分別是()A.27,28 B.27.5,28 C.28,27 D.26.5,277.在平面直角坐標系xOy中,將點N(–1,–2)繞點O旋轉180°,得到的對應點的坐標是()A.(1,2) B.(–1,2)C.(–1,–2) D.(1,–2)8.如圖,直線a、b被c所截,若a∥b,∠1=45°,∠2=65°,則∠3的度數為()A.110° B.115° C.120° D.130°9.點M(a,2a)在反比例函數y=的圖象上,那么a的值是()A.4 B.﹣4 C.2 D.±210.如圖,直線AB與直線CD相交于點O,E是∠COB內一點,且OE⊥AB,∠AOC=35°,則∠EOD的度數是()A.155° B.145° C.135° D.125°二、填空題(共7小題,每小題3分,滿分21分)11.如圖,一個裝有進水管和出水管的容器,從某時刻開始的4分鐘內只進水不出水,在隨后的8分鐘內既進水又出水,接著關閉進水管直到容器內的水放完.假設每分鐘的進水量和出水量是兩個常數,容器內的水量y(單位:升)與時間x(單位:分)之間的部分關系.那么,從關閉進水管起分鐘該容器內的水恰好放完.12.一次函數y=kx+b的圖像如圖所示,則當kx+b>0時,x的取值范圍為___________.13.老師在黑板上書寫了一個正確的演算過程,隨后用手掌捂住了一個多項式,形式如﹣2x2﹣2x+1=﹣x2+5x﹣3:則所捂住的多項式是___.14.有三個大小一樣的正六邊形,可按下列方式進行拼接:方式1:如圖1;方式2:如圖2;若有四個邊長均為1的正六邊形,采用方式1拼接,所得圖案的外輪廓的周長是_______.有個邊長均為1的正六邊形,采用上述兩種方式的一種或兩種方式混合拼接,若得圖案的外輪廓的周長為18,則的最大值為__________.15.肥皂泡的泡壁厚度大約是,用科學記數法表示為_______.16.分解因式:4ax2-ay2=________________.17.計算tan260°﹣2sin30°﹣cos45°的結果為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,直線與第一象限的一支雙曲線交于A、B兩點,A在B的左邊.(1)若=4,B(3,1),求直線及雙曲線的解析式:并直接寫出不等式的解集;(2)若A(1,3),第三象限的雙曲線上有一點C,接AC、BC,設直線BC解析式為;當AC⊥AB時,求證:k為定值.19.(5分)如圖,直線與雙曲線相交于、兩點.(1),點坐標為.(2)在軸上找一點,在軸上找一點,使的值最小,求出點兩點坐標20.(8分)如圖,是等腰三角形,,.(1)尺規作圖:作的角平分線,交于點(保留作圖痕跡,不寫作法);(2)判斷是否為等腰三角形,并說明理由.21.(10分)已知點O是正方形ABCD對角線BD的中點.(1)如圖1,若點E是OD的中點,點F是AB上一點,且使得∠CEF=90°,過點E作ME∥AD,交AB于點M,交CD于點N.①∠AEM=∠FEM;②點F是AB的中點;(2)如圖2,若點E是OD上一點,點F是AB上一點,且使,請判斷△EFC的形狀,并說明理由;(3)如圖3,若E是OD上的動點(不與O,D重合),連接CE,過E點作EF⊥CE,交AB于點F,當時,請猜想的值(請直接寫出結論).22.(10分)在□ABCD中,E為BC邊上一點,且AB=AE,求證:AC=DE。23.(12分)計算:4sin30°+(1﹣)0﹣|﹣2|+()﹣224.(14分)解分式方程:-1=
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
由BD是∠ABC的角平分線,根據角平分線定義得到一對角∠ABD與∠CBD相等,然后由DC∥AB,根據兩直線平行,得到一對內錯角∠ABD與∠CDB相等,利用等量代換得到∠DBC=∠CDB,再根據等角對等邊得到BC=CD,從而得到正確的選項.【詳解】∵BD是∠ABC的角平分線,∴∠ABD=∠CBD,又∵DC∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴BC=CD.故選A.【點睛】此題考查了等腰三角形的判定,以及平行線的性質.學生在做題時,若遇到兩直線平行,往往要想到用兩直線平行得同位角或內錯角相等,借助轉化的數學思想解決問題.這是一道較易的證明題,鍛煉了學生的邏輯思維能力.2、C【解析】根據旋轉的性質得,∠ABD=∠CBE=60°,∠E=∠C,則△ABD為等邊三角形,即AD=AB=BD,得∠ADB=60°因為∠ABD=∠CBE=60°,則∠CBD=60°,所以,∠ADB=∠CBD,得AD∥BC.故選C.3、C【解析】試題分析:(1)根據二次函數y=ax2+bx的性質a、b同號對稱軸在y軸左側,a、b異號對稱軸在y軸右側即可判斷.(2)根據“派生函數”y=ax2+bx,x=0時,y=0,經過原點,不能得出結論.(1)∵P(a,b)在y=上,∴a和b同號,所以對稱軸在y軸左側,∴存在函數y=的一個“派生函數”,其圖象的對稱軸在y軸的右側是假命題.(2)∵函數y=的所有“派生函數”為y=ax2+bx,∴x=0時,y=0,∴所有“派生函數”為y=ax2+bx經過原點,∴函數y=的所有“派生函數”,的圖象都進過同一點,是真命題.考點:(1)命題與定理;(2)新定義型4、B【解析】
連接OB,OC.首先證明△OBC是等邊三角形,再利用弧長公式計算即可.【詳解】解:連接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等邊三角形,∴OB=OC=BC=1,∴的長=,故選B.【點睛】考查弧長公式,等邊三角形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,屬于中考常考題型.5、B【解析】
選項A中,由一次函數y=x+k的圖象知k<0,由反比例函數y=的圖象知k>0,矛盾,所以選項A錯誤;選項B中,由一次函數y=x+k的圖象知k>0,由反比例函數y=的圖象知k>0,正確,所以選項B正確;由一次函數y=x+k的圖象知,函數圖象從左到右上升,所以選項C、D錯誤.故選B.6、A【解析】根據表格可知:數據25出現1次,26出現1次,27出現2次,28出現3次,∴眾數是28,這組數據從小到大排列為:25,26,27,27,28,28,28∴中位數是27∴這周最高氣溫的中位數與眾數分別是27,28故選A.7、A【解析】
根據點N(–1,–2)繞點O旋轉180°,所得到的對應點與點N關于原點中心對稱求解即可.【詳解】∵將點N(–1,–2)繞點O旋轉180°,∴得到的對應點與點N關于原點中心對稱,∵點N(–1,–2),∴得到的對應點的坐標是(1,2).故選A.【點睛】本題考查了旋轉的性質,由旋轉的性質得到的對應點與點N關于原點中心對稱是解答本題的關鍵.8、A【解析】試題分析:首先根據三角形的外角性質得到∠1+∠2=∠4,然后根據平行線的性質得到∠3=∠4求解.解:根據三角形的外角性質,∴∠1+∠2=∠4=110°,∵a∥b,∴∠3=∠4=110°,故選A.點評:本題考查了平行線的性質以及三角形的外角性質,屬于基礎題,難度較小.9、D【解析】
根據點M(a,2a)在反比例函數y=的圖象上,可得:,然后解方程即可求解.【詳解】因為點M(a,2a)在反比例函數y=的圖象上,可得:,,解得:,故選D.【點睛】本題主要考查反比例函數圖象的上點的特征,解決本題的關鍵是要熟練掌握反比例函數圖象上點的特征.10、D【解析】
解:∵∴∵EO⊥AB,∴∴故選D.二、填空題(共7小題,每小題3分,滿分21分)11、8。【解析】根據函數圖象求出進水管的進水量和出水管的出水量,由工程問題的數量關系就可以求出結論:由函數圖象得:進水管每分鐘的進水量為:20÷4=5升。設出水管每分鐘的出水量為a升,由函數圖象,得,解得:。∴關閉進水管后出水管放完水的時間為:(分鐘)。12、x>1【解析】分析:題目要求kx+b>0,即一次函數的圖像在x軸上方時,觀察圖象即可得x的取值范圍.詳解:∵kx+b>0,∴一次函數的圖像在x軸上方時,∴x的取值范圍為:x>1.故答案為x>1.點睛:本題考查了一次函數與一元一次不等式的關系,主要考查學生的觀察視圖能力.13、x2+7x-4【解析】
設他所捂的多項式為A,則接下來利用去括號法則對其進行去括號,然后合并同類項即可.【詳解】解:設他所捂的多項式為A,則根據題目信息可得他所捂的多項式為故答案為【點睛】本題是一道關于整數加減運算的題目,解答本題的關鍵是熟練掌握整數的加減運算;14、181【解析】
有四個邊長均為1的正六邊形,采用方式1拼接,利用4n+2的規律計算;把六個正六邊形圍著一個正六邊按照方式2進行拼接可使周長為8,六邊形的個數最多.【詳解】解:有四個邊長均為1的正六邊形,采用方式1拼接,所得圖案的外輪廓的周長為4×4+2=18;按下圖拼接,圖案的外輪廓的周長為18,此時正六邊形的個數最多,即n的最大值為1.故答案為:18;1.【點睛】本題考查了正多邊形和圓,以及圖形的變化類規律總結問題,根據題意,得出規律是解決此題的關鍵.15、7×10-1.【解析】
絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×10-n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.【詳解】0.0007=7×10-1.故答案為:7×10-1.【點睛】本題考查用科學記數法表示較小的數,一般形式為a×10-n,其中1≤|a|<10,n為由原數左邊起第一個不為零的數字前面的0的個數所決定.16、a(2x+y)(2x-y)【解析】
首先提取公因式a,再利用平方差進行分解即可.【詳解】原式=a(4x2-y2)
=a(2x+y)(2x-y),
故答案為a(2x+y)(2x-y).【點睛】本題考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.17、1【解析】
分別算三角函數,再化簡即可.【詳解】解:原式=-2×-×=1.【點睛】本題考查掌握簡單三角函數值,較基礎.三、解答題(共7小題,滿分69分)18、(1)1<x<3或x<0;(2)證明見解析.【解析】
(1)將B(3,1)代入,將B(3,1)代入,即可求出解析式;再根據圖像直接寫出不等式的解集;(2)過A作l∥x軸,過C作CG⊥l于G,過B作BH⊥l于H,△AGC∽△BHA,設B(m,)、C(n,),根據對應線段成比例即可得出mn=-9,聯立,得,根據根與系數的關系得,由此得出為定值.【詳解】解:(1)將B(3,1)代入,∴m=3,,將B(3,1)代入,∴,,∴,∴不等式的解集為1<x<3或x<0(2)過A作l∥x軸,過C作CG⊥l于G,過B作BH⊥l于H,則△AGC∽△BHA,設B(m,)、C(n,),∵,∴,∴,∴,∴mn=-9,聯立∴,∴∴,∴為定值.【點睛】此題主要考查反比例函數的圖像與性質,解題的關鍵是根據題意作出輔助線,再根據反比例函數的性質進行求解.19、(1),;(1),.【解析】
(1)由點A在一次函數圖象上,將A(-1,a)代入y=x+4,求出a的值,得到點A的坐標,再由點A的坐標利用待定系數法求出反比例函數解析式,聯立兩函數解析式成方程組,解方程組即可求出點B坐標;
(1)作點A關于y軸的對稱點A′,作點B作關于x軸的對稱點B′,連接A′B′,交x軸于點P,交y軸于點Q,連接PB、QA.利用待定系數法求出直線A′B′的解析式,進而求出P、Q兩點坐標.【詳解】解:(1)把點A(-1,a)代入一次函數y=x+4,
得:a=-1+4,解得:a=3,
∴點A的坐標為(-1,3).
把點A(-1,3)代入反比例函數y=,
得:k=-3,
∴反比例函數的表達式y=-.
聯立兩個函數關系式成方程組得:解得:或∴點B的坐標為(-3,1).
故答案為3,(-3,1);(1)作點A關于y軸的對稱點A′,作點B作關于x軸的對稱點B′,連接A′B′,交x軸于點P,交y軸于點Q,連接PB、QA,如圖所示.
∵點B、B′關于x軸對稱,點B的坐標為(-3,1),
∴點B′的坐標為(-3,-1),PB=PB′,
∵點A、A′關于y軸對稱,點A的坐標為(-1,3),
∴點A′的坐標為(1,3),QA=QA′,
∴BP+PQ+QA=B′P+PQ+QA′=A′B′,值最小.
設直線A′B′的解析式為y=mx+n,
把A′,B′兩點代入得:解得:∴直線A′B′的解析式為y=x+1.
令y=0,則x+1=0,解得:x=-1,點P的坐標為(-1,0),
令x=0,則y=1,點Q的坐標為(0,1).【點睛】本題考查反比例函數與一次函數的交點問題、待定系數法求函數解析式、軸對稱中的最短線路問題,解題的關鍵是:(1)聯立兩函數解析式成方程組,解方程組求出交點坐標;(1)根據軸對稱的性質找出點P、Q的位置.本題屬于基礎題,難度適中,解決該題型題目時,聯立解析式成方程組,解方程組求出交點坐標是關鍵.20、(1)作圖見解析(2)為等腰三角形【解析】
(1)作角平分線,以B點為圓心,任意長為半徑,畫圓弧;交直線AB于1點,直線BC于2點,再以2點為圓心,任意長為半徑,畫圓弧,再以1點為圓心,任意長為半徑,畫圓弧,相交于3點,連接3點和O點,直線3O即是已知角AOB的對稱中心線.(2)分別求出的三個角,看是否有兩個角相等,進而判斷是否為等腰三角形.【詳解】(1)具體如下:(2)在等腰中,,BD為∠ABC的平分線,故,,那么在中,∵∴是否為等腰三角形.【點睛】本題考查角平分線的作法,以及判定等腰三角形的方法.熟悉了解角平分線的定義以及等腰三角形的判定方法是解題的關鍵所在.21、(1)①證明見解析;②證明見解析;(2)△EFC是等腰直角三角形.理由見解析;(3).【解析】試題分析:(1)①過點E作EG⊥BC,垂足為G,根據ASA證明△CEG≌△FEM得CE=FE,再根據SAS證明△ABE≌△CBE得AE=CE,在△AEF中根據等腰三角形“三線合一”即可證明結論成立;②設AM=x,則AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x,DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,從而AF=AB,得到點F是AB的中點.;(2)過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AME≌△FME(SAS),從而可得△EFC是等腰直角三角形.(3)方法同第(2)小題.過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AEM≌△FEM(ASA),得AM=FM,設AM=x,則AF=2x,DN=x,DE=x,BD=x,AB=x,=2x:x=.試題解析:(1)①過點E作EG⊥BC,垂足為G,則四邊形MBGE為正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四邊形ABCD為正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB,∴∠AEM=∠FEM.②設AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四邊形AMND為矩形知,DN=AM=x,在Rt△DEN中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴點F是AB的中點.(2)△EFC是等腰直角三角形.過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),∴∠AEM=∠CEG,設AM=x,則DN=AM=x,DE=x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專利申請居間合同模板
- 神經內科年終工作總結
- 腦血管介入手術護理配合
- 北京市2025年度家具倉儲租賃與品牌推廣合作協議
- 簡易保險代理居間合同
- 2024浙江省瑞安市塘下職業中等專業學校工作人員招聘考試及答案
- 2024年九月煤炭堆場周邊野生動物防護設施租賃合同
- 辦公用房租賃合同范本(甲乙丙三方)
- 黃金首飾采購合同
- 秩序員崗位規范
- 《中央八項規定精神學習教育》專項講座
- 2025年交管12123學法減分考試題庫及答案
- 勞動者就業登記表(通用模板)
- 環刀法壓實度檢測記錄表
- 壓力容器(氣瓶)風險點告知卡
- 斜屋面專項施工方案-掛瓦坡屋面(附圖)
- 自保溫砌塊施工方案
- 合成氣生產甲醇工藝流程圖
- T分布臨界值表
- hs編碼對照表.xls
- φ178旋轉導向鉆井工具設計說明書
評論
0/150
提交評論