2023-2024學年福建省建甌市達標名校中考五模數學試題含解析_第1頁
2023-2024學年福建省建甌市達標名校中考五模數學試題含解析_第2頁
2023-2024學年福建省建甌市達標名校中考五模數學試題含解析_第3頁
2023-2024學年福建省建甌市達標名校中考五模數學試題含解析_第4頁
2023-2024學年福建省建甌市達標名校中考五模數學試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年福建省建甌市達標名校中考五模數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.﹣6的倒數是()A.﹣16 B.12.如圖,在Rt△ABC中,∠ACB=90°,點D,E分別是AB,BC的中點,點F是BD的中點.若AB=10,則EF=()A.2.5 B.3 C.4 D.53.如果關于x的分式方程有負分數解,且關于x的不等式組的解集為x<-2,那么符合條件的所有整數a的積是()A.-3 B.0 C.3 D.94.下列圖形中,是軸對稱圖形的是()A. B. C. D.5.某學校組織藝術攝影展,上交的作品要求如下:七寸照片(長7英寸,寬5英寸);將照片貼在一張矩形襯紙的正中央,照片四周外露襯紙的寬度相同;矩形襯紙的面積為照片面積的3倍.設照片四周外露襯紙的寬度為x英寸(如圖),下面所列方程正確的是()A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×56.如圖,直線被直線所截,,下列條件中能判定的是()A. B. C. D.7.一個兩位數,它的十位數字是3,個位數字是拋擲一枚質地均勻的骰子(六個面分別標有數字1﹣6)朝上一面的數字,任意拋擲這枚骰子一次,得到的兩位數是3的倍數的概率等于()A. B. C. D.8.一元二次方程的根是()A. B.C. D.9.如圖,在平面直角坐標系中,等腰直角三角形ABC的頂點A、B分別在x軸、y軸的正半軸上,∠ABC=90°,CA⊥x軸,點C在函數y=(x>0)的圖象上,若AB=2,則k的值為()A.4 B.2 C.2 D.10.如圖,直線m∥n,∠1=70°,∠2=30°,則∠A等于(

)A.30° B.35° C.40° D.50°二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在菱形ABCD中,對角線AC、BD相交于點O,點E是線段BO上的一個動點,點F為射線DC上一點,若∠ABC=60°,∠AEF=120°,AB=4,則EF可能的整數值是_____.12.方程的解是__________.13.如圖,已知△ABC,AB=6,AC=5,D是邊AB的中點,E是邊AC上一點,∠ADE=∠C,∠BAC的平分線分別交DE、BC于點F、G,那么的值為__________.14.如圖,AB是⊙O的切線,B為切點,AC經過點O,與⊙O分別相交于點D,C,若∠ACB=30°,AB=,則陰影部分的面積是___.15.分解因式:x2y﹣2xy2+y3=_____.16.1017年11月7日,山西省人民政府批準發布的《山西省第一次全國地理國情普查公報》顯示,山西省國土面積約為156700km1,該數據用科學記數法表示為__________km1.三、解答題(共8題,共72分)17.(8分)如圖,AB為⊙O的直徑,C是⊙O上一點,過點C的直線交AB的延長線于點D,AE⊥DC,垂足為E,F是AE與⊙O的交點,AC平分∠BAE.求證:DE是⊙O的切線;若AE=6,∠D=30°,求圖中陰影部分的面積.18.(8分)“六一”兒童節前夕,某縣教育局準備給留守兒童贈送一批學習用品,先對紅星小學的留守兒童人數進行抽樣統計,發現各班留守兒童人數分別為6名,7名,8名,10名,12名這五種情形,并繪制出如下的統計圖①和圖②.請根據相關信息,解答下列問題:(1)該校有_____個班級,補全條形統計圖;(2)求該校各班留守兒童人數數據的平均數,眾數與中位數;(3)若該鎮所有小學共有60個教學班,請根據樣本數據,估計該鎮小學生中,共有多少名留守兒童.19.(8分)先化簡,再求值:,其中.20.(8分)如圖所示,已知一次函數(k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(m≠0)的圖象在第一象限交于C點,CD垂直于x軸,垂足為D.若OA=OB=OD=1.(1)求點A、B、D的坐標;(2)求一次函數和反比例函數的解析式.21.(8分)如圖,AB是⊙O的直徑,點C為⊙O上一點,CN為⊙O的切線,OM⊥AB于點O,分別交AC、CN于D、M兩點.求證:MD=MC;若⊙O的半徑為5,AC=4,求MC的長.22.(10分)如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當水面的寬度為10m時,橋洞與水面的最大距離是5m.經過討論,同學們得出三種建立平面直角坐標系的方案(如圖),你選擇的方案是(填方案一,方案二,或方案三),則B點坐標是,求出你所選方案中的拋物線的表達式;因為上游水庫泄洪,水面寬度變為6m,求水面上漲的高度.23.(12分)先化簡再求值:,其中,.24.某家電銷售商場電冰箱的銷售價為每臺1600元,空調的銷售價為每臺1400元,每臺電冰箱的進價比每臺空調的進價多300元,商場用9000元購進電冰箱的數量與用7200元購進空調數量相等.(1)求每臺電冰箱與空調的進價分別是多少?(2)現在商場準備一次購進這兩種家電共100臺,設購進電冰箱x臺,這100臺家電的銷售利潤為Y元,要求購進空調數量不超過電冰箱數量的2倍,總利潤不低于16200元,請分析合理的方案共有多少種?(3)實際進貨時,廠家對電冰箱出廠價下調K(0<K<150)元,若商場保持這兩種家電的售價不變,請你根據以上信息及(2)中條件,設計出使這100臺家電銷售總利潤最大的進貨方案.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】解:﹣6的倒數是﹣162、A【解析】

先利用直角三角形的性質求出CD的長,再利用中位線定理求出EF的長.【詳解】∵∠ACB=90°,D為AB中點∴CD=1∵點E、F分別為BC、BD中點∴EF=1故答案為:A.【點睛】本題考查的知識點是直角三角形的性質和中位線定理,解題關鍵是尋找EF與題目已知長度的線段的數量關系.3、D【解析】解:,由①得:x≤2a+4,由②得:x<﹣2,由不等式組的解集為x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即,符合題意;把a=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合題意;把a=﹣1代入整式方程得:﹣3x﹣4=1﹣x,即,符合題意;把a=0代入整式方程得:﹣3x﹣3=1﹣x,即x=﹣2,不合題意;把a=1代入整式方程得:﹣3x﹣2=1﹣x,即,符合題意;把a=2代入整式方程得:﹣3x﹣1=1﹣x,即x=1,不合題意;把a=3代入整式方程得:﹣3x=1﹣x,即,符合題意;把a=4代入整式方程得:﹣3x+1=1﹣x,即x=0,不合題意,∴符合條件的整數a取值為﹣3;﹣1;1;3,之積為1.故選D.4、B【解析】分析:根據軸對稱圖形的概念求解.詳解:A、不是軸對稱圖形,故此選項不合題意;B、是軸對稱圖形,故此選項符合題意;C、不是軸對稱圖形,故此選項不合題意;D、不是軸對稱圖形,故此選項不合題意;故選B.點睛:本題考查了軸對稱圖形,軸對稱圖形的判斷方法:把某個圖象沿某條直線折疊,如果圖形的兩部分能夠重合,那么這個是軸對稱圖形.5、D【解析】試題分析:由題意得;如圖知;矩形的長="7+2x"寬=5+2x∴矩形襯底的面積=3倍的照片的面積,可得方程為(7+2X)(5+2X)=3×7×5考點:列方程點評:找到題中的等量關系,根據兩個矩形的面積3倍的關系得到方程,注意的是矩形的間距都為等量的,從而得到大矩形的長于寬,用未知數x的代數式表示,而列出方程,屬于基礎題.6、C【解析】試題解析:A、由∠3=∠2=35°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本選項錯誤;B、由∠3=∠2=45°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本選項錯誤;C、由∠3=∠2=55°,∠1=55°推知∠1=∠3,故能判定AB∥CD,故本選項正確;D、由∠3=∠2=125°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本選項錯誤;故選C.7、B【解析】

直接得出兩位數是3的倍數的個數,再利用概率公式求出答案.【詳解】∵一枚質地均勻的骰子,其六個面上分別標有數字1,2,3,4,5,6,投擲一次,十位數為3,則兩位數是3的倍數的個數為2.∴得到的兩位數是3的倍數的概率為:=.故答案選:B.【點睛】本題考查了概率的知識點,解題的關鍵是根據題意找出兩位數是3的倍數的個數再運用概率公式解答即可.8、D【解析】試題分析:此題考察一元二次方程的解法,觀察發現可以采用提公因式法來解答此題.原方程可化為:,因此或,所以.故選D.考點:一元二次方程的解法——因式分解法——提公因式法.9、A【解析】【分析】作BD⊥AC于D,如圖,先利用等腰直角三角形的性質得到AC=AB=2,BD=AD=CD=,再利用AC⊥x軸得到C(,2),然后根據反比例函數圖象上點的坐標特征計算k的值.【詳解】作BD⊥AC于D,如圖,∵△ABC為等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x軸,∴C(,2),把C(,2)代入y=得k=×2=4,故選A.【點睛】本題考查了等腰直角三角形的性質以及反比例函數圖象上點的坐標特征,熟知反比例函數y=(k為常數,k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k是解題的關鍵.10、C【解析】試題分析:已知m∥n,根據平行線的性質可得∠3=∠1=70°.又因∠3是△ABD的一個外角,可得∠3=∠2+∠A.即∠A=∠3-∠2=70°-30°=40°.故答案選C.考點:平行線的性質.二、填空題(本大題共6個小題,每小題3分,共18分)11、2,3,1.【解析】分析:根據題意得出EF的取值范圍,從而得出EF的值.詳解:∵AB=1,∠ABC=60°,∴BD=1,當點E和點B重合時,∠FBD=90°,∠BDC=30°,則EF=1;當點E和點O重合時,∠DEF=30°,則△EFD為等腰三角形,則EF=FD=2,∴EF可能的整數值為2、3、1.點睛:本題主要考查的就是菱形的性質以及直角三角形的勾股定理,屬于中等難度的題型.解決這個問題的關鍵就是找出當點E在何處時取到最大值和最小值,從而得出答案.12、.【解析】

根據解分式方程的步驟依次計算可得.【詳解】解:去分母,得:,解得:,當時,,所以是原分式方程的解,故答案為:.【點睛】本題主要考查解分式方程,解題的關鍵是熟練掌握解分式方程的步驟:①去分母;②求出整式方程的解;③檢驗;④得出結論.13、【解析】

由題中所給條件證明△ADF△ACG,可求出的值.【詳解】解:在△ADF和△ACG中,AB=6,AC=5,D是邊AB的中點AG是∠BAC的平分線,∴∠DAF=∠CAG∠ADE=∠C∴△ADF△ACG∴.故答案為.【點睛】本題考查了相似三角形的判定和性質,難度適中,需熟練掌握.14、﹣【解析】連接OB.∵AB是⊙O切線,∴OB⊥AB,∵OC=OB,∠C=30°,∴∠C=∠OBC=30°,∴∠AOB=∠C+∠OBC=60°,在Rt△ABO中,∵∠ABO=90°,AB=,∠A=30°,∴OB=1,∴S陰=S△ABO﹣S扇形OBD=×1×﹣=﹣.15、y(x﹣y)2【解析】

原式提取公因式,再利用完全平方公式分解即可【詳解】x2y﹣2xy2+y3=y(x2-2xy+y2)=y(x-y)2.【點睛】本題考查了提公因式法與公式法的綜合運用,熟練掌握運算法則是解本題的關鍵.16、1.267×102【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值是易錯點,由于126700有6位,所以可以確定n=6﹣1=2.【詳解】解:126700=1.267×102.故答案為1.267×102.【點睛】此題考查科學記數法表示較大的數的方法,準確確定a與n值是關鍵.三、解答題(共8題,共72分)17、(1)證明見解析;(2)陰影部分的面積為.【解析】

(1)連接OC,先證明∠OAC=∠OCA,進而得到OC∥AE,于是得到OC⊥CD,進而證明DE是⊙O的切線;(2)分別求出△OCD的面積和扇形OBC的面積,利用S陰影=S△COD﹣S扇形OBC即可得到答案.【詳解】解:(1)連接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵點C在圓O上,OC為圓O的半徑,∴CD是圓O的切線;(2)在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD=∴S△OCD==8,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=×π×OC2=,∵S陰影=S△COD﹣S扇形OBC∴S陰影=8﹣,∴陰影部分的面積為8﹣.18、(1)16;(2)平均數是3,眾數是10,中位數是3;(3)1.【解析】

(1)根據有7名留守兒童班級有2個,所占的百分比是2.5%,即可求得班級的總個數,再求出有8名留守兒童班級的個數,進而補全條形統計圖;(2)將這組數據按照從小到大排列即可求得統計的這組留守兒童人數數據的平均數、眾數和中位數;(3)利用班級數60乘以(2)中求得的平均數即可.【詳解】解:(1)該校的班級數是:2÷2.5%=16(個).則人數是8名的班級數是:16﹣1﹣2﹣6﹣2=5(個).條形統計圖補充如下圖所示:故答案為16;(2)每班的留守兒童的平均數是:(1×6+2×7+5×8+6×10+2×2)÷16=3將這組數據按照從小到大排列是:6,7,7,8,8,8,8,8,10,10,10,10,10,10,2,2.故這組數據的眾數是10,中位數是(8+10)÷2=3.即統計的這組留守兒童人數數據的平均數是3,眾數是10,中位數是3;(3)該鎮小學生中,共有留守兒童60×3=1(名).答:該鎮小學生中共有留守兒童1名.【點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大?。部疾榱似骄鶖?、中位數和眾數以及用樣本估計總體.19、,4.【解析】

先括號內通分,然后計算除法,最后代入化簡即可.【詳解】原式=.當時,原式=4.【點睛】此題考查分式的化簡求值,解題關鍵在于掌握運算法則.20、(1)A(-1,0),B(0,1),D(1,0)(2)一次函數的解析式為反比例函數的解析式為【解析】解:(1)∵OA=OB=OD=1,∴點A、B、D的坐標分別為A(-1,0),B(0,1),D(1,0)。(2)∵點A、B在一次函數(k≠0)的圖象上,∴,解得。∴一次函數的解析式為。∵點C在一次函數y=x+1的圖象上,且CD⊥x軸,∴點C的坐標為(1,2)。又∵點C在反比例函數(m≠0)的圖象上,∴m=1×2=2?!喾幢壤瘮档慕馕鍪綖?。(1)根據OA=OB=OD=1和各坐標軸上的點的特點易得到所求點的坐標。(2)將A、B兩點坐標分別代入,可用待定系數法確定一次函數的解析式,由C點在一次函數的圖象上可確定C點坐標,將C點坐標代入可確定反比例函數的解析式。21、(1)證明見解析;(2)MC=.【解析】【分析】(1)連接OC,利用切線的性質證明即可;(2)根據相似三角形的判定和性質以及勾股定理解答即可.【詳解】(1)連接OC,∵CN為⊙O的切線,∴OC⊥CM,∠OCA+∠ACM=90°,∵OM⊥AB,∴∠OAC+∠ODA=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACM=∠ODA=∠CDM,∴MD=MC;(2)由題意可知AB=5×2=10,AC=4,∵AB是⊙O的直徑,∴∠ACB=90°,∴BC==2,∵∠AOD=∠ACB,∠A=∠A,∴△AOD∽△ACB,∴,即,可得:OD=2.5,設MC=MD=x,在Rt△OCM中,由勾股定理得:(x+2.5)2=x2+52,解得:x=,即MC=.【點睛】本題考查了切線的判定和性質、相似三角形的判定和性質、勾股定理等知識,準確添加輔助線,正確尋找相似三角形是解決問題的關鍵.22、(1)方案1;B(5,0);;(2)3.2m.【解析】試題分析:(1)根據拋物線在坐標系的位置,可用待定系數法求拋物線的解析式.(2)把x=3代入拋物線的解析式,即可得到結論.試題解析:解:方案1:(1)點B的坐標為(5,0),設拋物線的解析式為:.由題意可以得到拋物線的頂點為(0,5),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入,解得:=3.2,∴水面上漲的高度為3.2m.方案2:(1)點B的坐標為(10,0).設拋物線的解析式為:.由題意可以得到拋物線的頂點為(5,5),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入解得:=3.2,∴水面上漲的高度為3.2m.方案3:(1)點B的坐標為(5,),由題意可以得到拋物線的頂點為(0,0).設拋物線的解析式為:,把點B的坐標(5,),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入解得:=,∴水面上漲的高度為3.2m.23、8【解析】

原式第一項利用完全平方公式展開,第二項利用單項式乘以多項式法則計算,合并得到最簡結果,將x與y的值代入計算即可求出值.【詳解】原式==,當,時,原式=【點睛】本題考查

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論