河北省唐山市豐南區達標名校2024年中考數學考試模擬沖刺卷含解析_第1頁
河北省唐山市豐南區達標名校2024年中考數學考試模擬沖刺卷含解析_第2頁
河北省唐山市豐南區達標名校2024年中考數學考試模擬沖刺卷含解析_第3頁
河北省唐山市豐南區達標名校2024年中考數學考試模擬沖刺卷含解析_第4頁
河北省唐山市豐南區達標名校2024年中考數學考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河北省唐山市豐南區達標名校2024年中考數學考試模擬沖刺卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(共10小題,每小題3分,共30分)1.某反比例函數的圖象經過點(-2,3),則此函數圖象也經過()A.(2,-3) B.(-3,3) C.(2,3) D.(-4,6)2.對于函數y=,下列說法正確的是()A.y是x的反比例函數 B.它的圖象過原點C.它的圖象不經過第三象限 D.y隨x的增大而減小3.點A、C為半徑是4的圓周上兩點,點B為的中點,以線段BA、BC為鄰邊作菱形ABCD,頂點D恰在該圓半徑的中點上,則該菱形的邊長為()A.或2 B.或2 C.2或2 D.2或24.下列運算正確的是()A.x3+x3=2x6 B.x6÷x2=x3 C.(﹣3x3)2=2x6 D.x2?x﹣3=x﹣15.如圖,將矩形ABCD繞點A順時針旋轉到矩形AB′C′D′的位置,旋轉角為α(0°<α<90°).若∠1=112°,則∠α的大小是()A.68° B.20° C.28° D.22°6.下列各式中正確的是()A.9=±3B.(-3)2=﹣3C.397.如圖,點A,B在雙曲線y=(x>0)上,點C在雙曲線y=(x>0)上,若AC∥y軸,BC∥x軸,且AC=BC,則AB等于()A. B.2 C.4 D.38.PM2.5是指大氣中直徑≤0.0000025米的顆粒物,將0.0000025用科學記數法表示為()A.2.5×10﹣7 B.2.5×10﹣6 C.25×10﹣7 D.0.25×10﹣59.若關于x的不等式組只有5個整數解,則a的取值范圍()A. B. C. D.10.計算(﹣)﹣1的結果是()A.﹣ B. C.2 D.﹣2二、填空題(本大題共6個小題,每小題3分,共18分)11.若反比例函數的圖象位于第二、四象限,則的取值范圍是__.12.小明統計了家里3月份的電話通話清單,按通話時間畫出頻數分布直方圖(如圖所示),則通話時間不足10分鐘的通話次數的頻率是_____.13.如果2,那么=_____(用向量,表示向量).14.方程組的解一定是方程_____與_____的公共解.15.甲、乙兩個搬運工搬運某種貨物.已知乙比甲每小時多搬運600kg,甲搬運5000kg所用的時間與乙搬運8000kg所用的時間相等.設甲每小時搬運xkg貨物,則可列方程為_____.16.親愛的同學們,在我們的生活中處處有數學的身影.請看圖,折疊一張三角形紙片,把三角形的三個角拼在一起,就得到一個著名的幾何定理,請你寫出這一定理的結論:“三角形的三個內角和等于_______°.”三、解答題(共8題,共72分)17.(8分)鄂州市化工材料經銷公司購進一種化工原料若干千克,價格為每千克30元.物價部門規定其銷售單價不高于每千克60元,不低于每千克30元.經市場調查發現:日銷售量y(千克)是銷售單價x(元)的一次函數,且當x=60時,y=80;x=50時,y=1.在銷售過程中,每天還要支付其他費用450元.求出y與x的函數關系式,并寫出自變量x的取值范圍.求該公司銷售該原料日獲利w(元)與銷售單價x(元)之間的函數關系式.當銷售單價為多少元時,該公司日獲利最大?最大獲利是多少元?18.(8分)在某小學“演講大賽”選拔賽初賽中,甲、乙、丙三位評委對小選手的綜合表現,分別給出“待定”(用字母W表示)或“通過”(用字母P表示)的結論.(1)請用樹狀圖表示出三位評委給小選手琪琪的所有可能的結論;(2)對于小選手琪琪,只有甲、乙兩位評委給出相同結論的概率是多少?(3)比賽規定,三位評委中至少有兩位給出“通過”的結論,則小選手可入圍進入復賽,問琪琪進入復賽的概率是多少?19.(8分)在一個不透明的布袋里裝有4個標有1、2、3、4的小球,它們的形狀、大小完全相同,李強從布袋中隨機取出一個小球,記下數字為x,王芳在剩下的3個小球中隨機取出一個小球,記下數字為y,這樣確定了點M的坐標畫樹狀圖列表,寫出點M所有可能的坐標;求點在函數的圖象上的概率.20.(8分)如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)線段AC,AG,AH什么關系?請說明理由;(3)設AE=m,①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數關系式;如果不變化,請求出定值.②請直接寫出使△CGH是等腰三角形的m值.21.(8分)如圖,AB是半圓O的直徑,D為弦BC的中點,延長OD交弧BC于點E,點F為OD的延長線上一點且滿足∠OBC=∠OFC,求證:CF為⊙O的切線;若四邊形ACFD是平行四邊形,求sin∠BAD的值.22.(10分)如圖,BD為△ABC外接圓⊙O的直徑,且∠BAE=∠C.求證:AE與⊙O相切于點A;若AE∥BC,BC=2,AC=2,求AD的長.23.(12分)如圖,拋物線y=﹣x2﹣x+4與x軸交于A,B兩點(A在B的左側),與y軸交于點C.(1)求點A,點B的坐標;(2)P為第二象限拋物線上的一個動點,求△ACP面積的最大值.24.在下列的網格圖中.每個小正方形的邊長均為1個單位,在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)試在圖中作出△ABC以A為旋轉中心,沿順時針方向旋轉90°后的圖形△AB1C1;(2)若點B的坐標為(-3,5),試在圖中畫出直角坐標系,并標出A、C兩點的坐標;(3)根據(2)中的坐標系作出與△ABC關于原點對稱的圖形△A2B2C2,并標出B2、C2兩點的坐標.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

設反比例函數y=(k為常數,k≠0),由于反比例函數的圖象經過點(-2,3),則k=-6,然后根據反比例函數圖象上點的坐標特征分別進行判斷.【詳解】設反比例函數y=(k為常數,k≠0),∵反比例函數的圖象經過點(-2,3),∴k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,∴點(2,-3)在反比例函數y=-的圖象上.故選A.【點睛】本題考查了反比例函數圖象上點的坐標特征:反比例函數y=(k為常數,k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.2、C【解析】

直接利用反比例函數的性質結合圖象分布得出答案.【詳解】對于函數y=,y是x2的反比例函數,故選項A錯誤;它的圖象不經過原點,故選項B錯誤;它的圖象分布在第一、二象限,不經過第三象限,故選項C正確;第一象限,y隨x的增大而減小,第二象限,y隨x的增大而增大,故選C.【點睛】此題主要考查了反比例函數的性質,正確得出函數圖象分布是解題關鍵.3、C【解析】

過B作直徑,連接AC交AO于E,如圖①,根據已知條件得到BD=OB=2,如圖②,BD=6,求得OD、OE、DE的長,連接OD,根據勾股定理得到結論.【詳解】過B作直徑,連接AC交AO于E,∵點B為的中點,∴BD⊥AC,如圖①,∵點D恰在該圓直徑上,D為OB的中點,∴BD=×4=2,∴OD=OB-BD=2,∵四邊形ABCD是菱形,∴DE=BD=1,∴OE=1+2=3,連接OC,∵CE=,在Rt△DEC中,由勾股定理得:DC=;如圖②,OD=2,BD=4+2=6,DE=BD=3,OE=3-2=1,由勾股定理得:CE=,DC=.故選C.【點睛】本題考查了圓心角,弧,弦的關系,勾股定理,菱形的性質,正確的作出圖形是解題的關鍵.4、D【解析】分析:根據合并同類項法則,同底數冪相除,積的乘方的性質,同底數冪相乘的性質,逐一判斷即可.詳解:根據合并同類項法則,可知x3+x3=2x3,故不正確;根據同底數冪相除,底數不變指數相加,可知a6÷a2=a4,故不正確;根據積的乘方,等于各個因式分別乘方,可知(-3a3)2=9a6,故不正確;根據同底數冪相乘,底數不變指數相加,可得x2?x﹣3=x﹣1,故正確.故選D.點睛:此題主要考查了整式的相關運算,是一道綜合性題目,熟練應用整式的相關性質和運算法則是解題關鍵.5、D【解析】試題解析:∵四邊形ABCD為矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD繞點A順時針旋轉到矩形AB′C′D′的位置,旋轉角為α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故選D.6、D【解析】

原式利用平方根、立方根定義計算即可求出值.【詳解】解:A、原式=3,不符合題意;B、原式=|-3|=3,不符合題意;C、原式不能化簡,不符合題意;D、原式=23-3=3,符合題意,故選:D.【點睛】此題考查了立方根,以及算術平方根,熟練掌握各自的性質是解本題的關鍵.7、B【解析】【分析】依據點C在雙曲線y=上,AC∥y軸,BC∥x軸,可設C(a,),則B(3a,),A(a,),依據AC=BC,即可得到﹣=3a﹣a,進而得出a=1,依據C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,進而得到Rt△ABC中,AB=2.【詳解】點C在雙曲線y=上,AC∥y軸,BC∥x軸,設C(a,),則B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(負值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,故選B.【點睛】本題主要考查了反比例函數圖象上點的坐標特征,注意反比例函數圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.8、B【解析】

絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×10﹣n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.【詳解】解:0.0000025=2.5×10﹣6;故選B.【點睛】本題考查了用科學記數法表示較小的數,一般形式為a×10﹣n,其中1≤|a|<10,n為由原數左邊起第一個不為零的數字前面的0的個數所決定.9、A【解析】

分別解兩個不等式得到得x<20和x>3-2a,由于不等式組只有5個整數解,則不等式組的解集為3-2a<x<20,且整數解為15、16、17、18、19,得到14≤3-2a<15,然后再解關于a的不等式組即可.【詳解】解①得x<20

解②得x>3-2a,

∵不等式組只有5個整數解,

∴不等式組的解集為3-2a<x<20,

∴14≤3-2a<15,故選:A【點睛】本題主要考查對不等式的性質,解一元一次不等式,一元一次不等式組的整數解等知識點的理解和掌握,能求出不等式14≤3-2a<15是解此題的關鍵.10、D【解析】

根據負整數指數冪與正整數指數冪互為倒數,可得答案.【詳解】解:,

故選D.【點睛】本題考查了負整數指數冪,負整數指數冪與正整數指數冪互為倒數.二、填空題(本大題共6個小題,每小題3分,共18分)11、k>1【解析】

根據圖象在第二、四象限,利用反比例函數的性質可以確定1-k的符號,即可解答.【詳解】∵反比例函數y=的圖象在第二、四象限,∴1-k<0,∴k>1.故答案為:k>1.【點睛】此題主要考查了反比例函數的性質,熟練記憶當k>0時,圖象分別位于第一、三象限;當k<0時,圖象分別位于第二、四象限是解決問題的關鍵.12、0.7【解析】

用通話時間不足10分鐘的通話次數除以通話的總次數即可得.【詳解】由圖可知:小明家3月份通話總次數為20+15+10+5=50(次);其中通話不足10分鐘的次數為20+15=35(次),∴通話時間不足10分鐘的通話次數的頻率是35÷50=0.7.故答案為0.7.13、【解析】∵2(+)=+,∴2+2=+,∴=-2,故答案為.點睛:本題看成平面向量、一元一次方程等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考基礎題.14、5x﹣3y=83x+8y=9【解析】

方程組的解一定是方程5x﹣3y=8與3x+8y=9的公共解.故答案為5x﹣3y=8;3x+8y=9.15、=【解析】

設甲每小時搬運x千克,則乙每小時搬運(x+600)千克,根據甲搬運5000kg所用時間與乙搬運8000kg所用時間相等建立方程求出其解就可以得出結論.【詳解】解:設甲每小時搬運x千克,則乙每小時搬運(x+600)千克,由題意得:=.故答案是:=.【點睛】本題考查了由實際問題抽象出分式方程,根據題意找到等量關系是關鍵.16、1【解析】本題主要考查了三角形的內角和定理.解:根據三角形的內角和可知填:1.三、解答題(共8題,共72分)17、(1)y=-2x+200(30≤x≤60)(2)w=-2(x-65)2+2000);(3)當銷售單價為60元時,該公司日獲利最大,為1950元【解析】

(1)設出一次函數解析式,把相應數值代入即可.(2)根據利潤計算公式列式即可;(3)進行配方求值即可.【詳解】(1)設y=kx+b,根據題意得解得:∴y=-2x+200(30≤x≤60)(2)W=(x-30)(-2x+200)-450=-2x2+260x-6450=-2(x-65)2+2000)(3)W=-2(x-65)2+2000∵30≤x≤60∴x=60時,w有最大值為1950元∴當銷售單價為60元時,該公司日獲利最大,為1950元考點:二次函數的應用.18、(1)見解析;(2);(3).【解析】

(1)根據列樹狀圖的步驟和題意分析所有等可能的出現結果,即可畫出圖形;(2)根據(1)求出甲、乙兩位評委給出相同結論的情況數,再根據概率公式即可求出答案;(3)根據(1)即可求出琪琪進入復賽的概率.【詳解】(1)畫樹狀圖如下:(2)∵共有8種等可能結果,只有甲、乙兩位評委給出相同結論的有2種可能,∴只有甲、乙兩位評委給出相同結論的概率P=;(3)∵共有8種等可能結果,三位評委中至少有兩位給出“通過”結論的有4種可能,∴樂樂進入復賽的概率P=.【點睛】此題考查了列樹狀圖,掌握列樹狀圖的步驟,找出三位評委給出相同結論的情況數是本題的關鍵,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P=.19、見解析;.【解析】

(1)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果;(2)找出點(x,y)在函數y=x+1的圖象上的情況,利用概率公式即可求得答案.【詳解】畫樹狀圖得:共有12種等可能的結果、、、、、、、、、、、;在所有12種等可能結果中,在函數的圖象上的有、、這3種結果,點在函數的圖象上的概率為.【點睛】本題考查的是用列表法或樹狀圖法求概率,一次函數圖象上點的坐標特征.注意樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數與總情況數之比.20、(1)=;(2)結論:AC2=AG?AH.理由見解析;(3)①△AGH的面積不變.②m的值為或2或8﹣4..【解析】

(1)證明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;(2)結論:AC2=AG?AH.只要證明△AHC∽△ACG即可解決問題;(3)①△AGH的面積不變.理由三角形的面積公式計算即可;②分三種情形分別求解即可解決問題.【詳解】(1)∵四邊形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,∴AC=,∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,∴∠AHC=∠ACG.故答案為=.(2)結論:AC2=AG?AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,∴△AHC∽△ACG,∴,∴AC2=AG?AH.(3)①△AGH的面積不變.理由:∵S△AGH=?AH?AG=AC2=×(4)2=1.∴△AGH的面積為1.②如圖1中,當GC=GH時,易證△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴,∴AE=AB=.如圖2中,當CH=HG時,易證AH=BC=4,∵BC∥AH,∴=1,∴AE=BE=2.如圖3中,當CG=CH時,易證∠ECB=∠DCF=22.3.在BC上取一點M,使得BM=BE,∴∠BME=∠BEM=43°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.3°,∴CM=EM,設BM=BE=m,則CM=EMm,∴m+m=4,∴m=4(﹣1),∴AE=4﹣4(﹣1)=8﹣4,綜上所述,滿足條件的m的值為或2或8﹣4.【點睛】本題屬于四邊形綜合題,考查了正方形的性質,全等三角形的判定和性質,相似三角形的判定和性質等知識,解題的關鍵是靈活運用所學知識解決問題.21、(1)見解析;(2).【解析】

(1)連接OC,根據等腰三角形的性質得到∠OCB=∠B,∠OCB=∠F,根據垂徑定理得到OF⊥BC,根據余角的性質得到∠OCF=90°,于是得到結論;

(2)過D作DH⊥AB于H,根據三角形的中位線的想知道的OD=AC,根據平行四邊形的性質得到DF=AC,設OD=x,得到AC=DF=2x,根據射影定理得到CD=x,求得BD=x,根據勾股定理得到AD=x,于是得到結論.【詳解】解:(1)連接OC,

∵OC=OB,

∴∠OCB=∠B,

∵∠B=∠F,

∴∠OCB=∠F,

∵D為BC的中點,

∴OF⊥BC,

∴∠F+∠FCD=90°,

∴∠OCB+∠FCD=90°,

∴∠OCF=90°,

∴CF為⊙O的切線;

(2)過D作DH⊥AB于H,

∵AO=OB,CD=DB,

∴OD=AC,

∵四邊形ACFD是平行四邊形,

∴DF=AC,

設OD=x,

∴AC=DF=2x,

∵∠OCF=90°,CD⊥OF,

∴CD2=OD?DF=2x2,

∴CD=x,

∴BD=x,

∴AD=x,

∵OD=x,BD=x,

∴OB=x,

∴DH=x,

∴sin∠BAD==.【點睛】本題考查了切線的判定和性質,平行四邊形的性質,垂徑定理,射影定理,勾股定理,三角函數的定義,正確的作出輔助線是解題的關鍵.22、(1)證明見解析;(2)AD=2.【解析】

(1)如圖,連接OA,根據同圓的半徑相等可得:∠D=∠DAO,由同弧所對的圓周角相等及已知得:∠BAE=∠DAO,再由直徑所對的圓周角是直角得:∠BAD=90°,可得結論;(2)先證明OA⊥BC,由垂徑定理得:,FB=BC,根據勾股定理計算AF、OB、AD的長即可.【詳解】(1)如圖,連接OA,交BC于F,則OA=OB,∴∠D=∠DAO,∵∠D=∠C,∴∠C=∠DAO,∵∠BAE=∠C,∴∠BAE=∠DAO,∵BD是⊙O的直徑,∴∠BAD=90°,即∠DAO+∠BAO=90°,∴∠BAE+∠BAO=90°,即∠O

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論