




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省渭南市名校2024屆中考數學全真模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,I是?ABC的內心,AI向延長線和△ABC的外接圓相交于點D,連接BI,BD,DC下列說法中錯誤的一項是()A.線段DB繞點D順時針旋轉一定能與線段DC重合B.線段DB繞點D順時針旋轉一定能與線段DI熏合C.∠CAD繞點A順時針旋轉一定能與∠DAB重合D.線段ID繞點I順時針旋轉一定能與線段IB重合2.已知反比例函數y=﹣,當﹣3<x<﹣2時,y的取值范圍是()A.0<y<1 B.1<y<2 C.2<y<3 D.﹣3<y<﹣23.如圖是由四個相同的小正方形組成的立體圖形,它的俯視圖為()A. B. C. D.4.下列四個圖形中,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.5.運用乘法公式計算(4+x)(4﹣x)的結果是()A.x2﹣16 B.16﹣x2 C.16﹣8x+x2 D.8﹣x26.如圖,在Rt△ABC中,∠ACB=90°,AC=2,以點C為圓心,CB的長為半徑畫弧,與AB邊交于點D,將繞點D旋轉180°后點B與點A恰好重合,則圖中陰影部分的面積為()A. B. C. D.7.下列各組數中,互為相反數的是()A.﹣1與(﹣1)2 B.(﹣1)2與1 C.2與 D.2與|﹣2|8.□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是()A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF9.如圖,⊙O內切于正方形ABCD,邊BC、DC上兩點M、N,且MN是⊙O的切線,當△AMN的面積為4時,則⊙O的半徑r是()A. B.2 C.2 D.410.在平面直角坐標系xOy中,若點P(3,4)在⊙O內,則⊙O的半徑r的取值范圍是()A.0<r<3 B.r>4 C.0<r<5 D.r>5二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,邊長為6的菱形ABCD中,AC是其對角線,∠B=60°,點P在CD上,CP=2,點M在AD上,點N在AC上,則△PMN的周長的最小值為_____________.12.如圖,已知,要使,還需添加一個條件,則可以添加的條件是.(只寫一個即可,不需要添加輔助線)13.將一次函數的圖象平移,使其經過點(2,3),則所得直線的函數解析式是______.14.已知一個多邊形的每一個內角都等于108°,則這個多邊形的邊數是.15.二次函數y=(x﹣2m)2+1,當m<x<m+1時,y隨x的增大而減小,則m的取值范圍是_____.16.因式分解:x2﹣4=.三、解答題(共8題,共72分)17.(8分)在邊長為1的5×5的方格中,有一個四邊形OABC,以O點為位似中心,作一個四邊形,使得所作四邊形與四邊形OABC位似,且該四邊形的各個頂點都在格點上;求出你所作的四邊形的面積.18.(8分)如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點D,連接AD.過點D作DE⊥AC,垂足為點E.求證:DE是⊙O的切線;當⊙O半徑為3,CE=2時,求BD長.19.(8分)如圖,在平面直角坐標系中,二次函數的圖象與軸交于,兩點,與軸交于點,點的坐標為.(1)求二次函數的解析式;(2)若點是拋物線在第四象限上的一個動點,當四邊形的面積最大時,求點的坐標,并求出四邊形的最大面積;(3)若為拋物線對稱軸上一動點,直接寫出使為直角三角形的點的坐標.20.(8分)計算:|﹣1|+(﹣1)2018﹣tan60°21.(8分)如圖,內接于,,的延長線交于點.(1)求證:平分;(2)若,,求和的長.22.(10分)問題探究(1)如圖①,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,則線段BE、EF、FD之間的數量關系為;(2)如圖②,在△ADC中,AD=2,CD=4,∠ADC是一個不固定的角,以AC為邊向△ADC的另一側作等邊△ABC,連接BD,則BD的長是否存在最大值?若存在,請求出其最大值;若不存在,請說明理由;問題解決(3)如圖③,在四邊形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足為點D,則對角線AC的長是否存在最大值?若存在,請求出其最大值;若不存在,請說明理由.23.(12分)先化簡,再求值:(﹣a)÷(1+),其中a是不等式﹣<a<的整數解.24..
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】解:∵I是△ABC的內心,∴AI平分∠BAC,BI平分∠ABC,∴∠BAD=∠CAD,∠ABI=∠CBI,故C正確,不符合題意;∴=,∴BD=CD,故A正確,不符合題意;∵∠DAC=∠DBC,∴∠BAD=∠DBC.∵∠IBD=∠IBC+∠DBC,∠BID=∠ABI+∠BAD,∴∠DBI=∠DIB,∴BD=DI,故B正確,不符合題意.故選D.點睛:本題考查了三角形的內切圓和內心的,以及等腰三角形的判定與性質,同弧所對的圓周角相等.2、C【解析】分析:由題意易得當﹣3<x<﹣2時,函數的圖象位于第二象限,且y隨x的增大而增大,再計算出當x=-3和x=-2時對應的函數值,即可作出判斷了.詳解:∵在中,﹣6<0,∴當﹣3<x<﹣2時函數的圖象位于第二象限內,且y隨x的增大而增大,∵當x=﹣3時,y=2,當x=﹣2時,y=3,∴當﹣3<x<﹣2時,2<y<3,故選C.點睛:熟悉“反比例函數的圖象和性質”是正確解答本題的關鍵.3、B【解析】
根據俯視圖是從上往下看的圖形解答即可.【詳解】從上往下看到的圖形是:.故選B.【點睛】本題考查三視圖的知識,解決此類圖的關鍵是由三視圖得到相應的立體圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線.4、D【解析】
根據軸對稱圖形與中心對稱圖形的概念判斷即可.【詳解】A、是軸對稱圖形,不是中心對稱圖形;B、是軸對稱圖形,不是中心對稱圖形;C、是軸對稱圖形,不是中心對稱圖形;D、不是軸對稱圖形,是中心對稱圖形.故選D.【點睛】本題考查的是中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.5、B【解析】
根據平方差公式計算即可得解.【詳解】,故選:B.【點睛】本題主要考查了整式的乘法公式,熟練掌握平方差公式的運算是解決本題的關鍵.6、B【解析】
陰影部分的面積=三角形的面積-扇形的面積,根據面積公式計算即可.【詳解】由旋轉可知AD=BD,∵∠ACB=90°,AC=2,∴CD=BD,∵CB=CD,∴△BCD是等邊三角形,∴∠BCD=∠CBD=60°,∴BC=AC=2,∴陰影部分的面積=2×2÷2?=2?.故答案選:B.【點睛】本題考查的知識點是旋轉的性質及扇形面積的計算,解題的關鍵是熟練的掌握旋轉的性質及扇形面積的計算.7、A【解析】
根據相反數的定義,對每個選項進行判斷即可.【詳解】解:A、(﹣1)2=1,1與﹣1互為相反數,正確;B、(﹣1)2=1,故錯誤;C、2與互為倒數,故錯誤;D、2=|﹣2|,故錯誤;故選:A.【點睛】本題考查了相反數的定義,解題的關鍵是掌握相反數的定義.8、B【解析】【分析】根據平行線的判定方法結合已知條件逐項進行分析即可得.【詳解】A、如圖,∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四邊形AECF是平行四邊形,故不符合題意;B、如圖所示,AE=CF,不能得到四邊形AECF是平行四邊形,故符合題意;C、如圖,∵四邊形ABCD是平行四邊形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AFCE,∴四邊形AECF是平行四邊形,故不符合題意;D、如圖,∵四邊形ABCD是平行四邊形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AECF,∴四邊形AECF是平行四邊形,故不符合題意,故選B.【點睛】本題考查了平行四邊形的性質與判定,熟練掌握平行四邊形的判定定理與性質定理是解題的關鍵.9、C【解析】
連接,交于點設則根據△AMN的面積為4,列出方程求出的值,再計算半徑即可.【詳解】連接,交于點內切于正方形為的切線,經過點為等腰直角三角形,為的切線,設則△AMN的面積為4,則即解得故選:C.【點睛】考查圓的切線的性質,等腰直角三角形的性質,三角形的面積公式,綜合性比較強.10、D【解析】
先利用勾股定理計算出OP=1,然后根據點與圓的位置關系的判定方法得到r的范圍.【詳解】∵點P的坐標為(3,4),∴OP1.∵點P(3,4)在⊙O內,∴OP<r,即r>1.故選D.【點睛】本題考查了點與圓的位置關系:點的位置可以確定該點到圓心距離與半徑的關系,反過來已知點到圓心距離與半徑的關系可以確定該點與圓的位置關系.二、填空題(本大題共6個小題,每小題3分,共18分)11、2【解析】
過P作關于AC和AD的對稱點,連接和,過P作,和,M,N共線時最短,根據對稱性得知△PMN的周長的最小值為.因為四邊形ABCD是菱形,AD是對角線,可以求得,根據特殊三角形函數值求得,,再根據線段相加勾股定理即可求解.【詳解】過P作關于AC和AD的對稱點,連接和,過P作,四邊形ABCD是菱形,AD是對角線,,,,,又由題意得【點睛】本題主要考查對稱性質,菱形性質,內角和定理和勾股定理,熟悉掌握定理是關鍵.12、可添∠ABD=∠CBD或AD=CD.【解析】
由AB=BC結合圖形可知這兩個三角形有兩組邊對應相等,添加一組邊利用SSS證明全等,也可以添加一對夾角相等,利用SAS證明全等,據此即可得答案.【詳解】.可添∠ABD=∠CBD或AD=CD,①∠ABD=∠CBD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS),故答案為∠ABD=∠CBD或AD=CD.【點睛】本題考查了三角形全等的判定,結合圖形與已知條件靈活應用全等三角形的判定方法是解題的關鍵.熟記全等三角形的判定方法有:SSS,SAS,ASA,AAS.13、【解析】試題分析:解:設y=x+b,∴3=2+b,解得:b=1.∴函數解析式為:y=x+1.故答案為y=x+1.考點:一次函數點評:本題要注意利用一次函數的特點,求出未知數的值從而求得其解析式,求直線平移后的解析式時要注意平移時k的值不變.14、1【解析】試題分析:∵多邊形的每一個內角都等于108°,∴每一個外角為72°.∵多邊形的外角和為360°,∴這個多邊形的邊數是:360÷÷72=1.15、m>1【解析】由條件可知二次函數對稱軸為x=2m,且開口向上,由二次函數的性質可知在對稱軸的左側時y隨x的增大而減小,可求得m+1<2m,即m>1.故答案為m>1.點睛:本題主要考查二次函數的性質,掌握當拋物線開口向下時,在對稱軸右側y隨x的增大而減小是解題的關鍵.16、(x+2)(x-2).【解析】試題分析:直接利用平方差公式分解因式得出x2﹣4=(x+2)(x﹣2).考點:因式分解-運用公式法三、解答題(共8題,共72分)17、(1)如圖所示,見解析;四邊形OA′B′C′即為所求;(2)S四邊形OA′B′C′=1.【解析】
(1)結合網格特點,分別作出點A、B、C關于點O成位似變換的對應點,再順次連接即可得;(2)根據S四邊形OA′B′C′=S△OA′B′+S△OB′C′計算可得.【詳解】(1)如圖所示,四邊形OA′B′C′即為所求.(2)S四邊形OA′B′C′=S△OA′B′+S△OB′C′=12×4×4+1=8+2=1.【點睛】本題考查了作圖-位似變換:先確定位似中心;再分別連接并延長位似中心和能代表原圖的關鍵點;接著根據位似比,確定能代表所作的位似圖形的關鍵點;然后順次連接上述各點,得到放大或縮小的圖形.18、(1)證明見解析;(2)BD=2.【解析】
(1)連接OD,AB為⊙0的直徑得∠ADB=90°,由AB=AC,根據等腰三角形性質得AD平分BC,即DB=DC,則OD為△ABC的中位線,所以OD∥AC,而DE⊥AC,則OD⊥DE,然后根據切線的判定方法即可得到結論;
(2)由∠B=∠C,∠CED=∠BDA=90°,得出△DEC∽△ADB,得出,從而求得BD?CD=AB?CE,由BD=CD,即可求得BD2=AB?CE,然后代入數據即可得到結果.【詳解】(1)證明:連接OD,如圖,∵AB為⊙0的直徑,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分BC,即DB=DC,∵OA=OB,∴OD為△ABC的中位線,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE是⊙0的切線;(2)∵∠B=∠C,∠CED=∠BDA=90°,∴△DEC∽△ADB,∴,∴BD?CD=AB?CE,∵BD=CD,∴BD2=AB?CE,∵⊙O半徑為3,CE=2,∴BD==2.【點睛】本題考查了切線的判定定理:過半徑的外端點且與半徑垂直的直線為圓的切線.也考查了等腰三角形的性質、三角形相似的判定和性質.19、(1);(2)P點坐標為,;(3)或或或.【解析】
(1)根據待定系數法把A、C兩點坐標代入可求得二次函數的解析式;
(2)由拋物線解析式可求得B點坐標,由B、C坐標可求得直線BC解析式,可設出P點坐標,用P點坐標表示出四邊形ABPC的面積,根據二次函數的性質可求得其面積的最大值及P點坐標;
(3)首先設出Q點的坐標,則可表示出QB2、QC2和BC2,然后分∠BQC=90°、∠CBQ=90°和∠BCQ=90°三種情況,求解即可.【詳解】解:(1)∵A(-1,0),在上,,解得,∴二次函數的解析式為;(2)在中,令可得,解得或,,且,∴經過、兩點的直線為,設點的坐標為,如圖,過點作軸,垂足為,與直線交于點,則,,∴當時,四邊形的面積最大,此時P點坐標為,∴四邊形的最大面積為;(3),∴對稱軸為,∴可設點坐標為,,,,,,為直角三角形,∴有、和三種情況,①當時,則有,即,解得或,此時點坐標為或;②當時,則有,即,解得,此時點坐標為;③當時,則有,即,解得,此時點坐標為;綜上可知點的坐標為或或或.【點睛】本題考查了待定系數法、三角形的面積、二次函數的性質、勾股定理、方程思想及分類討論思想等知識,注意分類討論思想的應用.20、1【解析】
原式利用絕對值的代數意義,乘方的意義,以及特殊角的三角函數值計算即可求出值.【詳解】|﹣1|+(﹣1)2118﹣tan61°=﹣1+1﹣=1.【點睛】本題考查了實數的運算,涉及了絕對值化簡、特殊角的三角函數值,熟練掌握各運算的運算法則是解題的關鍵.21、(1)證明見解析;(2)AC=,CD=,【解析】分析:(1)延長AO交BC于H,連接BO,證明A、O在線段BC的垂直平分線上,得出AO⊥BC,再由等腰三角形的性質即可得出結論;(2)延長CD交⊙O于E,連接BE,則CE是⊙O的直徑,由圓周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=BC=10,由勾股定理求出BE=8,證出BE∥OA,得出,求出OD=,得出CD=,而BE∥OA,由三角形中位線定理得出OH=BE=4,CH=BC=3,在Rt△ACH中,由勾股定理求出AC的長即可.本題解析:解:(1)證明:延長AO交BC于H,連接BO.∵AB=AC,OB=OC,∴A,O在線段BC的垂直平分線上.∴AO⊥BC.又∵AB=AC,∴AO平分∠BAC.(2)延長CD交⊙O于E,連接BE,則CE是⊙O的直徑.∴∠EBC=90°,BC⊥BE.∵∠E=∠BAC,∴sinE=sin∠BAC.∴=.∴CE=BC=10.∴BE==8,OA=OE=CE=5.∵AH⊥BC,∴BE∥OA.∴=,即=,解得OD=.∴CD=5+=.∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位線.∴OH=BE=4,CH=BC=3.∴AH=5+4=9.在Rt△ACH中,AC===3.點睛:本題考查了等腰三角形的判定與性質、三角函數及圓的有關計算,(1)中由三線合一定理求解是解題的關鍵,(2)中由圓周角定理得出∠EBC=90°,∠E=∠BAC,再利用三角函數及三角形中位線定理求出AC即可,本題綜合性強,有一定難度.22、(1)BE+DF=EF;(2)存在,BD的最大值為6;(3)存在,AC的最大值為2+2.【解析】
(1)作輔助線,首先證明△ABE≌△ADG,再證明△AEF≌△AEG,進而得到EF=FG問題即可解決;(2)將△ABD繞著點B順時針旋轉60°,得到△BCE,連接DE,由旋轉可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根據DE<DC+CE,則當D、C、E三點共線時,DE存在最大值,問題即可解決;(3)以BC為邊作等邊三角形BCE,過點E作EF⊥BC于點F,連接DE,由旋轉的性質得△DBE是等邊三角形,則DE=AC,根據在等邊三角形BCE中,EF⊥BC,可求出BF,EF,以BC為直徑作⊙F,則點D在⊙F上,連接DF,可求出DF,則AC=DE≤DF+EF,代入數值即可解決問題.【詳解】(1)如圖①,延長CD至G,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 篷布帳篷設計原理考核試卷
- 礦產勘查安全生產與事故預防考核試卷
- 抗凝劑皮下注射技術臨床實踐指南(2024版)解讀
- 臨床常見管道的護理 4
- 7-9 數字系統設計實例3-數字乘法器處理器設計
- 二年級數學表內乘法口算練習共800道
- 四川建筑職業技術學院《工程圖學(二)》2023-2024學年第二學期期末試卷
- 四川省達州市開江縣2025屆初三下學期第四次周練英語試題含答案
- 山東省寧陽一中2025屆學業水平考試歷史試題含解析
- 南京視覺藝術職業學院《病原微生物免疫與健康》2023-2024學年第二學期期末試卷
- 精神疾病治療新靶點-深度研究
- 教學課件-統計學(第三版)袁衛
- 醫院保安員培訓
- 教學設計-3.5函數的最值及其應用
- CNAS-CL01:2018 檢測和校準實驗室能力認可準則
- 血透室敘事護理
- 2024-2025學年湖南省邵陽市新邵縣第二中學高二上學期期中考試英語試卷
- 學習通《形勢與政策》2025春章節測試答案
- 2025年中共涼山州委辦公室面向全州考調所屬事業單位工作人員高頻重點模擬試卷提升(共500題附帶答案詳解)
- 夏季貨車行車安全教育
- 【基礎卷】同步分層練習:五年級下冊語文第14課《刷子李》(含答案)
評論
0/150
提交評論