2024屆安徽省潛山市第四中學中考適應性考試數學試題含解析_第1頁
2024屆安徽省潛山市第四中學中考適應性考試數學試題含解析_第2頁
2024屆安徽省潛山市第四中學中考適應性考試數學試題含解析_第3頁
2024屆安徽省潛山市第四中學中考適應性考試數學試題含解析_第4頁
2024屆安徽省潛山市第四中學中考適應性考試數學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆安徽省潛山市第四中學中考適應性考試數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(共10小題,每小題3分,共30分)1.1903年、英國物理學家盧瑟福通過實驗證實,放射性物質在放出射線后,這種物質的質量將減少,減少的速度開始較快,后來較慢,實際上,放射性物質的質量減為原來的一半所用的時間是一個不變的量,我們把這個時間稱為此種放射性物質的半衰期,如圖是表示鐳的放射規律的函數圖象,根據圖象可以判斷,鐳的半衰期為()A.810年 B.1620年 C.3240年 D.4860年2.如圖,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB與△OCD的面積分別是S1和S2,△OAB與△OCD的周長分別是C1和C2,則下列等式一定成立的是()A. B. C. D.3.-4的絕對值是()A.4 B. C.-4 D.4.在同一平面直角坐標系中,一次函數y=kx﹣2k和二次函數y=﹣kx2+2x﹣4(k是常數且k≠0)的圖象可能是()A. B.C. D.5.計算(ab2)3的結果是()A.ab5 B.ab6 C.a3b5 D.a3b66.下列各圖中,∠1與∠2互為鄰補角的是()A. B.C. D.7.填在下面各正方形中的四個數之間都有相同的規律,根據這種規律,m的值應是()A.110 B.158 C.168 D.1788.衡陽市某生態示范園計劃種植一批梨樹,原計劃總產值30萬千克,為了滿足市場需求,現決定改良梨樹品種,改良后平均每畝產量是原來的1.5倍,總產量比原計劃增加了6萬千克,種植畝數減少了10畝,則原來平均每畝產量是多少萬千克?設原來平均每畝產量為x萬千克,根據題意,列方程為()A.﹣=10 B.﹣=10C.﹣=10 D.+=109.在下面四個幾何體中,從左面看、從上面看分別得到的平面圖形是長方形、圓,這個幾何體是()A. B. C. D.10.如圖,已知直線,點E,F分別在、上,,如果∠B=40°,那么()A.20° B.40° C.60° D.80°二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在平行四邊形ABCD中,AB<AD,∠D=30°,CD=4,以AB為直徑的⊙O交BC于點E,則陰影部分的面積為_____.12.如圖,⊙O中,弦AB、CD相交于點P,若∠A=30°,∠APD=70°,則∠B等于_____.13.一個不透明的袋中共有5個小球,分別為2個紅球和3個黃球,它們除顏色外完全相同,隨機摸出兩個小球,摸出兩個顏色相同的小球的概率為____.14.如圖,平行于x軸的直線AC分別交拋物線(x≥0)與(x≥0)于B、C兩點,過點C作y軸的平行線交y1于點D,直線DE∥AC,交y2于點E,則=_.15.關于x的不等式組的整數解有4個,那么a的取值范圍()A.4<a<6 B.4≤a<6 C.4<a≤6 D.2<a≤416.我國自主研發的某型號手機處理器采用10nm工藝,已知1nm=0.000000001m,則10nm用科學記數法可表示為_____m.三、解答題(共8題,共72分)17.(8分)如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點C落在斜邊AB上某一點D處,折痕為EF(點E、F分別在邊AC、BC上)若△CEF與△ABC相似.①當AC=BC=2時,AD的長為;②當AC=3,BC=4時,AD的長為;當點D是AB的中點時,△CEF與△ABC相似嗎?請說明理由.18.(8分)如圖1,在Rt△ABC中,∠C=90°,AC=BC=2,點D、E分別在邊AC、AB上,AD=DE=AB,連接DE.將△ADE繞點A逆時針方向旋轉,記旋轉角為θ.(1)問題發現①當θ=0°時,=;②當θ=180°時,=.(2)拓展探究試判斷:當0°≤θ<360°時,的大小有無變化?請僅就圖2的情形給出證明;(3)問題解決①在旋轉過程中,BE的最大值為;②當△ADE旋轉至B、D、E三點共線時,線段CD的長為.19.(8分)如圖,AD是△ABC的中線,CF⊥AD于點F,BE⊥AD,交AD的延長線于點E,求證:AF+AE=2AD.20.(8分)某文具店購進A,B兩種鋼筆,若購進A種鋼筆2支,B種鋼筆3支,共需90元;購進A種鋼筆3支,B種鋼筆5支,共需145元.(1)求A、B兩種鋼筆每支各多少元?(2)若該文具店要購進A,B兩種鋼筆共90支,總費用不超過1588元,并且A種鋼筆的數量少于B種鋼筆的數量,那么該文具店有哪幾種購買方案?(3)文具店以每支30元的價格銷售B種鋼筆,很快銷售一空,于是,文具店決定在進價不變的基礎上再購進一批B種鋼筆,漲價賣出,經統計,B種鋼筆售價為30元時,每月可賣68支;每漲價1元,每月將少賣4支,設文具店將新購進的B種鋼筆每支漲價a元(a為正整數),銷售這批鋼筆每月獲利W元,試求W與a之間的函數關系式,并且求出B種鉛筆銷售單價定為多少元時,每月獲利最大?最大利潤是多少元?21.(8分)x取哪些整數值時,不等式5x+2>3(x-1)與x≤2-x都成立?22.(10分)某學校為增加體育館觀眾坐席數量,決定對體育館進行施工改造.如圖,為體育館改造的截面示意圖.已知原座位區最高點A到地面的鉛直高度AC長度為15米,原坡面AB的傾斜角∠ABC為45°,原坡腳B與場館中央的運動區邊界的安全距離BD為5米.如果按照施工方提供的設計方案施工,新座位區最高點E到地面的鉛直高度EG長度保持15米不變,使A、E兩點間距離為2米,使改造后坡面EF的傾斜角∠EFG為37°.若學校要求新坡腳F需與場館中央的運動區邊界的安全距離FD至少保持2.5米(即FD≥2.5),請問施工方提供的設計方案是否滿足安全要求呢?請說明理由.(參考數據:sin37°≈,tan37°≈)23.(12分)如圖,在平面直角坐標系中,拋物線C1經過點A(﹣4,0)、B(﹣1,0),其頂點為.(1)求拋物線C1的表達式;(2)將拋物線C1繞點B旋轉180°,得到拋物線C2,求拋物線C2的表達式;(3)再將拋物線C2沿x軸向右平移得到拋物線C3,設拋物線C3與x軸分別交于點E、F(E在F左側),頂點為G,連接AG、DF、AD、GF,若四邊形ADFG為矩形,求點E的坐標.24.在第23個世界讀書日前夕,我市某中學為了解本校學生的每周課外閱讀時間用t表示,單位:小時,采用隨機抽樣的方法進行問卷調查,調查結果按,,,分為四個等級,并依次用A,B,C,D表示,根據調查結果統計的數據,繪制成了如圖所示的兩幅不完整的統計圖,由圖中給出的信息解答下列問題:求本次調查的學生人數;求扇形統計圖中等級B所在扇形的圓心角度數,并把條形統計圖補充完整;若該校共有學生1200人,試估計每周課外閱讀時間滿足的人數.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

根據半衰期的定義,函數圖象的橫坐標,可得答案.【詳解】由橫坐標看出1620年時,鐳質量減為原來的一半,故鐳的半衰期為1620年,故選B.【點睛】本題考查了函數圖象,利用函數圖象的意義及放射性物質的半衰期是解題關鍵.2、D【解析】A選項,在△OAB∽△OCD中,OB和CD不是對應邊,因此它們的比值不一定等于相似比,所以A選項不一定成立;B選項,在△OAB∽△OCD中,∠A和∠C是對應角,因此,所以B選項不成立;C選項,因為相似三角形的面積比等于相似比的平方,所以C選項不成立;D選項,因為相似三角形的周長比等于相似比,所以D選項一定成立.故選D.3、A【解析】

根據絕對值的概念計算即可.(絕對值是指一個數在坐標軸上所對應點到原點的距離叫做這個數的絕對值.)【詳解】根據絕對值的概念可得-4的絕對值為4.【點睛】錯因分析:容易題.選錯的原因是對實數的相關概念沒有掌握,與倒數、相反數的概念混淆.4、C【解析】

根據一次函數與二次函數的圖象的性質,求出k的取值范圍,再逐項判斷即可.【詳解】解:A、由一次函數圖象可知,k>0,∴﹣k<0,∴二次函數的圖象開口應該向下,故A選項不合題意;B、由一次函數圖象可知,k>0,∴﹣k<0,-=>0,∴二次函數的圖象開口向下,且對稱軸在x軸的正半軸,故B選項不合題意;C、由一次函數圖象可知,k<0,∴﹣k>0,-=<0,,∴二次函數的圖象開口向上,且對稱軸在x軸的負半軸,一次函數必經過點(2,0),當x=2時,二次函數值y=﹣4k>0,故C選項符合題意;D、由一次函數圖象可知,k<0,∴﹣k>0,-=<0,,∴二次函數的圖象開口向上,且對稱軸在x軸的負半軸,一次函數必經過點(2,0),當x=2時,二次函數值y=﹣4k>0,故D選項不合題意;故選:C.【點睛】本題考查一次函數與二次函數的圖象和性質,解決此題的關鍵是熟記圖象的性質,此外,還要主要二次函數的對稱軸、兩圖象的交點的位置等.5、D【解析】試題分析:根據積的乘方的性質進行計算,然后直接選取答案即可.試題解析:(ab2)3=a3?(b2)3=a3b1.故選D.考點:冪的乘方與積的乘方.6、D【解析】根據鄰補角的定義可知:只有D圖中的是鄰補角,其它都不是.故選D.7、B【解析】根據排列規律,10下面的數是12,10右面的數是14,∵8=2×4?0,22=4×6?2,44=6×8?4,∴m=12×14?10=158.故選C.8、A【解析】

根據題意可得等量關系:原計劃種植的畝數-改良后種植的畝數=10畝,根據等量關系列出方程即可.【詳解】設原計劃每畝平均產量萬千克,則改良后平均每畝產量為萬千克,根據題意列方程為:.故選:.【點睛】此題主要考查了由實際問題抽象出分式方程,關鍵是正確理解題意,找出題目中的等量關系.9、A【解析】試題分析:由題意可知:從左面看得到的平面圖形是長方形是柱體,從上面看得到的平面圖形是圓的是圓柱或圓錐,綜合得出這個幾何體為圓柱,由此選擇答案即可.解:從左面看得到的平面圖形是長方形是柱體,符合條件的有A、C、D,從上面看得到的平面圖形是圓的是圓柱或圓錐,符合條件的有A、B,綜上所知這個幾何體是圓柱.故選A.考點:由三視圖判斷幾何體.10、C【解析】

根據平行線的性質,可得的度數,再根據以及平行線的性質,即可得出的度數.【詳解】∵,,∴,∵,∴,∵,∴,故選C.【點睛】本題主要考查了平行線的性質的運用,解題時注意:兩直線平行,同旁內角互補,且內錯角相等.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】【分析】連接半徑和弦AE,根據直徑所對的圓周角是直角得:∠AEB=90°,繼而可得AE和BE的長,所以圖中弓形的面積為扇形OBE的面積與△OBE面積的差,因為OA=OB,所以△OBE的面積是△ABE面積的一半,可得結論.【詳解】如圖,連接OE、AE,∵AB是⊙O的直徑,∴∠AEB=90°,∵四邊形ABCD是平行四邊形,∴AB=CD=4,∠B=∠D=30°,∴AE=AB=2,BE==2,∵OA=OB=OE,∴∠B=∠OEB=30°,∴∠BOE=120°,∴S陰影=S扇形OBE﹣S△BOE==,故答案為.【點睛】本題考查了扇形的面積計算、平行四邊形的性質,含30度角的直角三角形的性質等,求出扇形OBE的面積和△ABE的面積是解本題的關鍵.12、40°【解析】

由∠A=30°,∠APD=70°,利用三角形外角的性質,即可求得∠C的度數,又由在同圓或等圓中,同弧或等弧所對的圓周角相等,即可求得∠B的度數.【詳解】解:∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°,∵∠B與∠C是對的圓周角,∴∠B=∠C=40°.故答案為40°.【點睛】此題考查了圓周角定理與三角形外角的性質.此題難度不大,解題的關鍵是掌握在同圓或等圓中,同弧或等弧所對的圓周角相等定理的應用.13、【解析】

解:根據題意可得:列表如下紅1紅2黃1黃2黃3紅1紅1,紅2紅1,黃1紅1,黃2紅1,黃3紅2紅2,紅1紅2,黃1紅2,黃2紅2,黃3黃1黃1,紅1黃1,紅2黃1,黃2黃1,黃3黃2黃2,紅1黃2,紅2黃2,黃1黃2,黃3黃3黃3,紅1黃3,紅2黃3,黃1黃3,黃2共有20種所有等可能的結果,其中兩個顏色相同的有8種情況,故摸出兩個顏色相同的小球的概率為.【點睛】本題考查列表法和樹狀圖法,掌握步驟正確列表是解題關鍵.14、5-【解析】試題分析:本題我們可以假設一個點的坐標,然后進行求解.設點C的坐標為(1,),則點B的坐標為(,),點D的坐標為(1,1),點E的坐標為(,1),則AB=,DE=-1,則=5-.考點:二次函數的性質15、C【解析】分析:先根據一元一次不等式組解出x的取值,再根據不等式組的整數解有4個,求出實數a的取值范圍.詳解:解不等式①,得解不等式②,得原不等式組的解集為∵只有4個整數解,∴整數解為:故選C.點睛:考查解一元一次不等式組的整數解,分別解不等式,寫出不等式的解題,根據不等式整數解的個數,確定a的取值范圍.16、1×10﹣1【解析】

絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×10-n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.【詳解】解:10nm用科學記數法可表示為1×10-1m,

故答案為1×10-1.【點睛】本題考查用科學記數法表示較小的數,一般形式為a×10-n,其中1≤|a|<10,n為由原數左邊起第一個不為零的數字前面的0的個數所決定.三、解答題(共8題,共72分)17、解:(1)①.②或.(2)當點D是AB的中點時,△CEF與△ABC相似.理由見解析.【解析】

(1)①當AC=BC=2時,△ABC為等腰直角三角形;

②若△CEF與△ABC相似,分兩種情況:①若CE:CF=3:4,如圖1所示,此時EF∥AB,CD為AB邊上的高;②若CF:CE=3:4,如圖2所示.由相似三角形角之間的關系,可以推出∠A=∠ECD與∠B=∠FCD,從而得到CD=AD=BD,即D點為AB的中點;

(2)當點D是AB的中點時,△CEF與△ABC相似.可以推出∠CFE=∠A,∠C=∠C,從而可以證明兩個三角形相似.【詳解】(1)若△CEF與△ABC相似.①當AC=BC=2時,△ABC為等腰直角三角形,如答圖1所示,此時D為AB邊中點,AD=AC=.②當AC=3,BC=4時,有兩種情況:(I)若CE:CF=3:4,如答圖2所示,∵CE:CF=AC:BC,∴EF∥BC.由折疊性質可知,CD⊥EF,∴CD⊥AB,即此時CD為AB邊上的高.在Rt△ABC中,AC=3,BC=4,∴BC=1.∴cosA=.∴AD=AC?cosA=3×=.(II)若CF:CE=3:4,如答圖3所示.∵△CEF∽△CAB,∴∠CEF=∠B.由折疊性質可知,∠CEF+∠ECD=90°.又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD.同理可得:∠B=∠FCD,CD=BD.∴AD=BD.∴此時AD=AB=×1=.綜上所述,當AC=3,BC=4時,AD的長為或.(2)當點D是AB的中點時,△CEF與△CBA相似.理由如下:

如圖所示,連接CD,與EF交于點Q.

∵CD是Rt△ABC的中線

∴CD=DB=AB,

∴∠DCB=∠B.

由折疊性質可知,∠CQF=∠DQF=90°,

∴∠DCB+∠CFE=90°,

∵∠B+∠A=90°,

∴∠CFE=∠A,

又∵∠ACB=∠ACB,

∴△CEF∽△CBA.18、(1)①;(2)無變化,證明見解析;(3)①2+2+1或﹣1.【解析】

(1)①先判斷出DE∥CB,進而得出比例式,代值即可得出結論;②先得出DE∥BC,即可得出,,再用比例的性質即可得出結論;(2)先∠CAD=∠BAE,進而判斷出△ADC∽△AEB即可得出結論;(3)分點D在BE的延長線上和點D在BE上,先利用勾股定理求出BD,再借助(2)結論即可得出CD.【詳解】解:(1)①當θ=0°時,在Rt△ABC中,AC=BC=2,∴∠A=∠B=45°,AB=2,∵AD=DE=AB=,∴∠AED=∠A=45°,∴∠ADE=90°,∴DE∥CB,∴,∴,∴,故答案為,②當θ=180°時,如圖1,∵DE∥BC,∴,∴,即:,∴,故答案為;(2)當0°≤θ<360°時,的大小沒有變化,理由:∵∠CAB=∠DAE,∴∠CAD=∠BAE,∵,∴△ADC∽△AEB,∴;(3)①當點E在BA的延長線時,BE最大,在Rt△ADE中,AE=AD=2,∴BE最大=AB+AE=2+2;②如圖2,當點E在BD上時,∵∠ADE=90°,∴∠ADB=90°,在Rt△ADB中,AB=2,AD=,根據勾股定理得,BD==,∴BE=BD+DE=+,由(2)知,,∴CD=+1,如圖3,當點D在BE的延長線上時,在Rt△ADB中,AD=,AB=2,根據勾股定理得,BD==,∴BE=BD﹣DE=﹣,由(2)知,,∴CD=﹣1.故答案為+1或﹣1.【點睛】此題是相似形綜合題,主要考查了等腰直角三角形的性質和判定,勾股定理,相似三角形的判定和性質,比例的基本性質及分類討論的數學思想,解(1)的關鍵是得出DE∥BC,解(2)的關鍵是判斷出△ADC∽△AEB,解(3)關鍵是作出圖形求出BD,是一道中等難度的題目.19、證明見解析.【解析】

由題意易用角角邊證明△BDE≌△CDF,得到DF=DE,再用等量代換的思想用含有AE和AF的等式表示AD的長.【詳解】證明:∵CF⊥AD于,BE⊥AD,∴BE∥CF,∠EBD=∠FCD,又∵AD是△ABC的中線,∴BD=CD,∴在△BED與△CFD中,,∴△△BED≌△CFD(AAS)∴ED=FD,又∵AD=AF+DF①,

AD=AE-DE②,由①+②得:AF+AE=2AD.【點睛】該題考察了三角形全等的證明,利用全等三角形的性質進行對應邊的轉化.20、(1)A種鋼筆每只15元B種鋼筆每只20元;(2)方案有兩種,一方案為:購進A種鋼筆43支,購進B種鋼筆為47支方案二:購進A種鋼筆44支,購進B種鋼筆46支;(3)定價為33元或34元,最大利潤是728元.【解析】(1)設A種鋼筆每只x元,B種鋼筆每支y元,由題意得,解得:,答:A種鋼筆每只15元,B種鋼筆每支20元;(2)設購進A種鋼筆z支,由題意得:,∴42.4≤z<45,∵z是整數z=43,44,∴90-z=47,或46;∴共有兩種方案:方案一:購進A種鋼筆43支,購進B種鋼筆47支,方案二:購進A種鋼筆44只,購進B種鋼筆46只;(3)W=(30-20+a)(68-4a)=-4a2+28a+680=-4(a-)2+729,∵-4<0,∴W有最大值,∵a為正整數,∴當a=3,或a=4時,W最大,∴W最大==-4×(3-)2+729=728,30+a=33,或34;答:B種鉛筆銷售單價定為33元或34元時,每月獲利最大,最大利潤是728元.21、-2,-1,0,1【解析】

解不等式5x+2>3(x-1)得:得x>-2.5;解不等式x≤2-x得x≤1.則這兩個不等式解集的公共部分為,因為x取整數,則x取-2,-1,0,1.故答案為-2,-1,0,1【點睛】本題考查了求不等式組的整數解,先求出每個不等式的解集,再求出它們的公共部分,最后確定公共的整數解(包括正整數,0,負整數).22、不滿足安全要求,理由見解析.【解析】

在Rt△ABC中,由∠ACB=90°,AC=15m,∠ABC=45°可求得BC=15m;在Rt△EGD中,由∠EGD=90°,EG=15m,∠EFG=37°,可解得GF=20m;通過已知條件可證得四邊形EACG是矩形,從而可得GC=AE=2m;這樣可解得:DF=GC+BC+BD-GF=2+15+5-20=2<2.5,由此可知:“設計方案不滿足安全要求”.【詳解】解:施工方提供的設計方案不滿足安全要求,理由如下:在Rt△ABC中,AC=15m,∠ABC=45°,∴BC==15m.在Rt△EFG中,EG=15m,∠EFG=37°,∴GF=≈=20m.∵EG=AC=15m,AC⊥BC,EG⊥BC,∴EG∥AC,∴四邊形EGCA是矩形,∴GC=EA=2m,∴DF=GC+BC+BD-GF=2+15+5-20=2<2.5.∴施工方提供的設計方案不滿足安全要求.23、(1)y;(2);(3)E(,0).【解析】

(1)根據拋物線C1的頂點坐標可設頂點式將點B坐標代入求解即可;(2)由拋物線C1繞點B旋轉180°得到拋物線C2知拋物線C2的頂點坐標,可設拋物線C2的頂點式,根據旋轉后拋物線C2開口朝下,且形狀不變即可確定其表達式;(3)作GK⊥x軸于G,DH⊥AB于H,由題意GK=DH=3,AH=HB=EK=KF,結合矩形的性質利用兩組對應角分別相等的兩個三角形相似

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論