2023-2024學年浙江省溫州市瑞安市重點達標名校中考數學對點突破模擬試卷含解析_第1頁
2023-2024學年浙江省溫州市瑞安市重點達標名校中考數學對點突破模擬試卷含解析_第2頁
2023-2024學年浙江省溫州市瑞安市重點達標名校中考數學對點突破模擬試卷含解析_第3頁
2023-2024學年浙江省溫州市瑞安市重點達標名校中考數學對點突破模擬試卷含解析_第4頁
2023-2024學年浙江省溫州市瑞安市重點達標名校中考數學對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年浙江省溫州市瑞安市重點達標名校中考數學對點突破模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.關于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,則()A.a≠±1 B.a=1 C.a=﹣1 D.a=±12.=()A.±4 B.4 C.±2 D.23.如圖,將矩形ABCD繞點A順時針旋轉到矩形AB′C′D′的位置,旋轉角為α(0°<α<90°).若∠1=112°,則∠α的大小是()A.68° B.20° C.28° D.22°4.下列各類數中,與數軸上的點存在一一對應關系的是()A.有理數B.實數C.分數D.整數5.如圖,從邊長為a的正方形中去掉一個邊長為b的小正方形,然后將剩余部分剪后拼成一個長方形,上述操作能驗證的等式是()A. B.C. D.6.如圖,在矩形ABCD中,AB=2,AD=3,點E是BC邊上靠近點B的三等分點,動點P從點A出發,沿路徑A→D→C→E運動,則△APE的面積y與點P經過的路徑長x之間的函數關系用圖象表示大致是()A. B. C. D.7.如圖,在△ABC中,點D,E分別在邊AB,AC上,且AEAB=ADA.1:3B.1:2C.1:3D.8.如圖1,點F從菱形ABCD的頂點A出發,沿A→D→B以1cm/s的速度勻速運動到點B,圖2是點F運動時,△FBC的面積y(cm2)隨時間x(s)變化的關系圖象,則a的值為()A. B.2 C. D.29.有下列四種說法:①半徑確定了,圓就確定了;②直徑是弦;③弦是直徑;④半圓是弧,但弧不一定是半圓.其中,錯誤的說法有()A.1種 B.2種 C.3種 D.4種10.如圖是嬰兒車的平面示意圖,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度數為()A.80° B.90° C.100° D.102°二、填空題(共7小題,每小題3分,滿分21分)11.如圖,把一塊含有45°角的直角三角板的兩個頂點放在直尺的對邊上.如果∠1=20°,那么∠2的度數是_____.12.如圖,△ABC中,過重心G的直線平行于BC,且交邊AB于點D,交邊AC于點E,如果設=,=,用,表示,那么=___.13.若一組數據1,2,3,的平均數是2,則的值為______.14.計算:(1)()2=_____;(2)=_____.15.如圖,在平面直角坐標系中,點A(0,6),點B在x軸的負半軸上,將線段AB繞點A逆時針旋轉90°至AB',點M是線段AB'的中點,若反比例函數y=(k≠0)的圖象恰好經過點B'、M,則k=_____.16.將一張矩形紙片折疊成如圖所示的圖形,若AB=6cm,則AC=cm.17.請你算一算:如果每人每天節約1粒大米,全國13億人口一天就能節約_____千克大米!(結果用科學記數法表示,已知1克大米約52粒)三、解答題(共7小題,滿分69分)18.(10分)如圖,拋物線y=﹣x2+bx+c與x軸交于點A和點B(3,0),與y軸交于點C(0,3),點D是拋物線的頂點,過點D作x軸的垂線,垂足為E,連接DB.(1)求此拋物線的解析式及頂點D的坐標;(2)點M是拋物線上的動點,設點M的橫坐標為m.①當∠MBA=∠BDE時,求點M的坐標;②過點M作MN∥x軸,與拋物線交于點N,P為x軸上一點,連接PM,PN,將△PMN沿著MN翻折,得△QMN,若四邊形MPNQ恰好為正方形,直接寫出m的值.19.(5分)已知關于的一元二次方程.試證明:無論取何值此方程總有兩個實數根;若原方程的兩根,滿足,求的值.20.(8分)如圖,AD是等腰△ABC底邊BC上的高,點O是AC中點,延長DO到E,使AE∥BC,連接AE.求證:四邊形ADCE是矩形;①若AB=17,BC=16,則四邊形ADCE的面積=.②若AB=10,則BC=時,四邊形ADCE是正方形.21.(10分)已知關于x,y的二元一次方程組的解為,求a、b的值.22.(10分)如圖1,是一個材質均勻可自由轉動的轉盤,轉盤的四個扇形面積相等,分別有數字1,2,3,1.如圖2,正方形ABCD頂點處各有一個圈.跳圈游戲的規則為:游戲者每轉動轉盤一次,當轉盤停止運動時,指針所落扇形中的數字是幾(當指針落在四個扇形的交線上時,重新轉動轉盤),就沿正方形的邊順時針方向連續跳幾個邊長.如:若從圖A起跳,第一次指針所落扇形中的數字是3,就順時針連線跳3個邊長,落到圈D;若第二次指針所落扇形中的數字是2,就從D開始順時針續跳2個邊長,落到圈B;……設游戲者從圈A起跳.(1)嘉嘉隨機轉一次轉盤,求落回到圈A的概率P1;(2)琪琪隨機轉兩次轉盤,用列表法求最后落回到圈A的概率P2,并指出她與嘉嘉落回到圈A的可能性一樣嗎?23.(12分)如圖,CD是一高為4米的平臺,AB是與CD底部相平的一棵樹,在平臺頂C點測得樹頂A點的仰角,從平臺底部向樹的方向水平前進3米到達點E,在點E處測得樹頂A點的仰角,求樹高AB(結果保留根號).24.(14分)如圖,直線l切⊙O于點A,點P為直線l上一點,直線PO交⊙O于點C、B,點D在線段AP上,連接DB,且AD=DB.(1)求證:DB為⊙O的切線;(2)若AD=1,PB=BO,求弦AC的長.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

根據一元一次方程的定義即可求出答案.【詳解】由題意可知:,解得a=?1故選C.【點睛】本題考查一元二次方程的定義,解題的關鍵是熟練運用一元二次方程的定義,本題屬于基礎題型.2、B【解析】

表示16的算術平方根,為正數,再根據二次根式的性質化簡.【詳解】解:,故選B.【點睛】本題考查了算術平方根,本題難點是平方根與算術平方根的區別與聯系,一個正數算術平方根有一個,而平方根有兩個.3、D【解析】試題解析:∵四邊形ABCD為矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD繞點A順時針旋轉到矩形AB′C′D′的位置,旋轉角為α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故選D.4、B【解析】

根據實數與數軸上的點存在一一對應關系解答.【詳解】實數與數軸上的點存在一一對應關系,故選:B.【點睛】本題考查了實數與數軸上點的關系,每一個實數都可以用數軸上唯一的點來表示,反過來,數軸上的每個點都表示一個唯一的實數,也就是說實數與數軸上的點一一對應.5、A【解析】

由圖形可以知道,由大正方形的面積-小正方形的面積=矩形的面積,進而可以證明平方差公式.【詳解】解:大正方形的面積-小正方形的面積=,

矩形的面積=,

故,

故選:A.【點睛】本題主要考查平方差公式的幾何意義,用兩種方法表示陰影部分的面積是解題的關鍵.6、B【解析】

由題意可知,當時,;當時,;當時,.∵時,;時,.∴結合函數解析式,可知選項B正確.【點睛】考點:1.動點問題的函數圖象;2.三角形的面積.7、C【解析】∵AEAB∴△ABC∽△AED。∴SΔ∴SΔ8、C【解析】

通過分析圖象,點F從點A到D用as,此時,△FBC的面積為a,依此可求菱形的高DE,再由圖象可知,BD=,應用兩次勾股定理分別求BE和a.【詳解】過點D作DE⊥BC于點E.由圖象可知,點F由點A到點D用時為as,△FBC的面積為acm1..∴AD=a.∴DE?AD=a.∴DE=1.當點F從D到B時,用s.∴BD=.Rt△DBE中,BE=,∵四邊形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=.故選C.【點睛】本題綜合考查了菱形性質和一次函數圖象性質,解答過程中要注意函數圖象變化與動點位置之間的關系.9、B【解析】

根據弦的定義、弧的定義、以及確定圓的條件即可解決.【詳解】解:圓確定的條件是確定圓心與半徑,是假命題,故此說法錯誤;直徑是弦,直徑是圓內最長的弦,是真命題,故此說法正確;弦是直徑,只有過圓心的弦才是直徑,是假命題,故此說法錯誤;④半圓是弧,但弧不一定是半圓,圓的任意一條直徑的兩個端點把圓分成兩條弧,每一條弧都叫半圓,所以半圓是弧.但比半圓大的弧是優弧,比半圓小的弧是劣弧,不是所有的弧都是半圓,是真命題,故此說法正確.

其中錯誤說法的是①③兩個.故選B.【點睛】本題考查弦與直徑的區別,弧與半圓的區別,及確定圓的條件,不要將弦與直徑、弧與半圓混淆.10、A【解析】分析:根據平行線性質求出∠A,根據三角形內角和定理得出∠2=180°∠1?∠A,代入求出即可.詳解:∵AB∥CD.∴∠A=∠3=40°,∵∠1=60°,∴∠2=180°∠1?∠A=80°,故選:A.點睛:本題考查了平行線的性質:兩直線平行,內錯角相等.三角形內角和定理:三角形內角和為180°.二、填空題(共7小題,每小題3分,滿分21分)11、25°.【解析】∵直尺的對邊平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°-∠3=45°-20°=25°.12、【解析】

連接AG,延長AG交BC于F.首先證明DG=GE,再利用三角形法則求出即可解決問題.【詳解】連接AG,延長AG交BC于F.

∵G是△ABC的重心,DE∥BC,

∴BF=CF,

∵,,

∴,

∵BF=CF,

∴DG=GE,

∵,,

∴,

∴,

故答案為.【點睛】本題考查三角形的重心,平行線的性質,平面向量等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.13、1【解析】

根據這組數據的平均數是1和平均數的計算公式列式計算即可.【詳解】∵數據1,1,3,的平均數是1,∴,解得:.故答案為:1.【點睛】本題考查了平均數的定義,根據平均數的定義建立方程求解是解題的關鍵.14、【解析】

(1)直接利用分式乘方運算法則計算得出答案;(2)直接利用分式除法運算法則計算得出答案.【詳解】(1)()2=;故答案為;(2)==.故答案為.【點睛】此題主要考查了分式的乘除法運算,正確掌握運算法則是解題關鍵.15、12【解析】

根據題意可以求得點B'的橫坐標,然后根據反比例函數y=(k≠0)的圖象恰好經過點B'、M,從而可以求得k的值.【詳解】解:作B′C⊥y軸于點C,如圖所示,∵∠BAB′=90°,∠AOB=90°,AB=AB′,∴∠BAO+∠ABO=90°,∠BAO+∠B′AC=90°,∴∠ABO=∠BA′C,∴△ABO≌△BA′C,∴AO=B′C,∵點A(0,6),∴B′C=6,設點B′的坐標為(6,),∵點M是線段AB'的中點,點A(0,6),∴點M的坐標為(3,),∵反比例函數y=(k≠0)的圖象恰好經過點M,∴=,解得,k=12,故答案為:12.【點睛】本題考查反比例函數圖象上點的坐標特征、旋轉的性質,解答本題的關鍵是明確題意,利用數形結合的思想解答.16、1.【解析】試題分析:如圖,∵矩形的對邊平行,∴∠1=∠ACB,∵∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=1cm,∴AC=1cm.考點:1軸對稱;2矩形的性質;3等腰三角形.17、2.5×1【解析】

先根據有理數的除法求出節約大米的千克數,再用科學計數法表示,對于一個絕對值較大的數,用科學記數法寫成的形式,其中,n是比原整數位數少1的數.【詳解】1300000000÷52÷1000(千克)=25000(千克)=2.5×1(千克).故答案為2.5×1.【點睛】本題考查了有理數的除法和正整數指數科學計數法,根據科學計算法的要求,正確確定出a和n的值是解答本題的關鍵.三、解答題(共7小題,滿分69分)18、(1)(1,4)(2)①點M坐標(﹣,)或(﹣,﹣);②m的值為或【解析】

(1)利用待定系數法即可解決問題;(2)①根據tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,構建方程即可解決問題;②因為點M、N關于拋物線的對稱軸對稱,四邊形MPNQ是正方形,推出點P是拋物線的對稱軸與x軸的交點,即OP=1,易證GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解決問題.【詳解】解:(1)把點B(3,0),C(0,3)代入y=﹣x2+bx+c,得到,解得,∴拋物線的解析式為y=﹣x2+2x+3,∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴頂點D坐標(1,4);(2)①作MG⊥x軸于G,連接BM.則∠MGB=90°,設M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA=,∵DE⊥x軸,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE==,∵∠MBA=∠BDE,∴=,當點M在x軸上方時,=,解得m=﹣或3(舍棄),∴M(﹣,),當點M在x軸下方時,=,解得m=﹣或m=3(舍棄),∴點M(﹣,﹣),綜上所述,滿足條件的點M坐標(﹣,)或(﹣,﹣);②如圖中,∵MN∥x軸,∴點M、N關于拋物線的對稱軸對稱,∵四邊形MPNQ是正方形,∴點P是拋物線的對稱軸與x軸的交點,即OP=1,易證GM=GP,即|﹣m2+2m+3|=|1﹣m|,當﹣m2+2m+3=1﹣m時,解得m=,當﹣m2+2m+3=m﹣1時,解得m=,∴滿足條件的m的值為或.【點睛】本題考查二次函數綜合題、銳角三角函數、正方形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,學會利用參數構建方程解決問題,屬于中考壓軸題.19、(1)證明見解析;(2)-2.【解析】分析:(1)將原方程變形為一般式,根據方程的系數結合根的判別式,即可得出△=(2p+1)2≥1,由此即可證出:無論p取何值此方程總有兩個實數根;(2)根據根與系數的關系可得出x1+x2=5、x1x2=6-p2-p,結合x12+x22-x1x2=3p2+1,即可求出p值.詳解:(1)證明:原方程可變形為x2-5x+6-p2-p=1.∵△=(-5)2-4(6-p2-p)=25-24+4p2+4p=4p2+4p+1=(2p+1)2≥1,∴無論p取何值此方程總有兩個實數根;(2)∵原方程的兩根為x1、x2,∴x1+x2=5,x1x2=6-p2-p.又∵x12+x22-x1x2=3p2+1,∴(x1+x2)2-3x1x2=3p2+1,∴52-3(6-p2-p)=3p2+1,∴25-18+3p2+3p=3p2+1,∴3p=-6,∴p=-2.點睛:本題考查了根與系數的關系以及根的判別式,解題的關鍵是:(1)牢記“當△≥1時,方程有兩個實數根”;(2)根據根與系數的關系結合x12+x22-x1x2=3p2+1,求出p值.20、(1)見解析;(2)①1;②.【解析】試題分析:(1)根據平行四邊形的性質得出四邊形ADCE是平行四邊形,根據垂直推出∠ADC=90°,根據矩形的判定得出即可;(2)①求出DC,根據勾股定理求出AD,根據矩形的面積公式求出即可;②要使ADCE是正方形,只需要AC⊥DE,即∠DOC=90°,只需要OD2+OC2=DC2,即可得到BC的長.試題解析:(1)證明:∵AE∥BC,∴∠AEO=∠CDO.又∵∠AOE=∠COD,OA=OC,∴△AOE≌△COD,∴OE=OD,而OA=OC,∴四邊形ADCE是平行四邊形.∵AD是BC邊上的高,∴∠ADC=90°.∴□ADCE是矩形.(2)①解:∵AD是等腰△ABC底邊BC上的高,BC=16,AB=17,∴BD=CD=8,AB=AC=17,∠ADC=90°,由勾股定理得:AD===12,∴四邊形ADCE的面積是AD×DC=12×8=1.②當BC=時,DC=DB=.∵ADCE是矩形,∴OD=OC=2.∵OD2+OC2=DC2,∴∠DOC=90°,∴AC⊥DE,∴ADCE是正方形.點睛:本題考查了平行四邊形的判定,矩形的判定和性質,等腰三角形的性質,勾股定理的應用,能綜合運用定理進行推理和計算是解答此題的關鍵,比較典型,難度適中.21、或【解析】

把代入二元一次方程組得到關于a,b的方程組,經過整理,得到關于b的一元二次方程,解之即可得到b的值,把b的值代入一個關于a,b的二元一次方程,求出a的值,即可得到答案.【詳解】把代入二元一次方程組得:,

由①得:a=1+b,

把a=1+b代入②,整理得:

b2+b-2=0,

解得:b=-2或b=1,

把b=-2代入①得:a+2=1,

解得:a=-1,

把b=1代入①得:

a-1=1,

解得:a=2,

即或.【點睛】本題考查了二元一次方程組的解,正確掌握代入法是解題的關鍵.22、(1)落回到圈A的概率P1=;(2)她與嘉嘉落回到圈A的可能性一樣.【解析】

(1)由共有1種等可能的結果,落回到圈A的只有1種情況,直接利用概率公式求解即可求得答案;(2)首先根據題意列出表格,然后由表格求得所有等可能的結果與最后落回到圈A的情況,再利用概率公式求解即可求得答案;【詳解】(1)∵共有1種等可能的結果,落回到圈A的只有1種情況,∴落回到圈A的概率P1=;(2)列表得:12311(1,1)(2,1)(3,1)(1,1)2(1,2)(2,2)(3,2)(1,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論