云南省云大附中2023-2024學年高三3月份模擬考試數(shù)學試題含解析_第1頁
云南省云大附中2023-2024學年高三3月份模擬考試數(shù)學試題含解析_第2頁
云南省云大附中2023-2024學年高三3月份模擬考試數(shù)學試題含解析_第3頁
云南省云大附中2023-2024學年高三3月份模擬考試數(shù)學試題含解析_第4頁
云南省云大附中2023-2024學年高三3月份模擬考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

云南省云大附中2023-2024學年高三3月份模擬考試數(shù)學試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點為雙曲線的右焦點,直線與雙曲線交于A,B兩點,若,則的面積為()A. B. C. D.2.已知實數(shù),滿足,則的最大值等于()A.2 B. C.4 D.83.已知,是橢圓與雙曲線的公共焦點,是它們的一個公共點,且,橢圓的離心率為,雙曲線的離心率為,若,則的最小值為()A. B. C.8 D.64.的展開式中各項系數(shù)的和為2,則該展開式中常數(shù)項為A.-40 B.-20 C.20 D.405.在中,內(nèi)角A,B,C所對的邊分別為a,b,c,D是AB的中點,若,且,則面積的最大值是()A. B. C. D.6.德國數(shù)學家萊布尼茲(1646年-1716年)于1674年得到了第一個關(guān)于π的級數(shù)展開式,該公式于明朝初年傳入我國.在我國科技水平業(yè)已落后的情況下,我國數(shù)學家?天文學家明安圖(1692年-1765年)為提高我國的數(shù)學研究水平,從乾隆初年(1736年)開始,歷時近30年,證明了包括這個公式在內(nèi)的三個公式,同時求得了展開三角函數(shù)和反三角函數(shù)的6個新級數(shù)公式,著有《割圓密率捷法》一書,為我國用級數(shù)計算π開創(chuàng)了先河.如圖所示的程序框圖可以用萊布尼茲“關(guān)于π的級數(shù)展開式”計算π的近似值(其中P表示π的近似值),若輸入,則輸出的結(jié)果是()A. B.C. D.7.已知平行于軸的直線分別交曲線于兩點,則的最小值為()A. B. C. D.8.已知函數(shù),若,則a的取值范圍為()A. B. C. D.9.一個幾何體的三視圖如圖所示,則這個幾何體的體積為()A. B.C. D.10.函數(shù)的單調(diào)遞增區(qū)間是()A. B. C. D.11.已知集合,則集合真子集的個數(shù)為()A.3 B.4 C.7 D.812.已知向量,,則向量與的夾角為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,,則_________.14.記等差數(shù)列和的前項和分別為和,若,則______.15.已知函數(shù)對于都有,且周期為2,當時,,則________________________.16.設(shè)命題:,,則:__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系x0y中,把曲線α為參數(shù))上每個點的橫坐標變?yōu)樵瓉淼谋叮v坐標不變,得到曲線以坐標原點為極點,以x軸正半軸為極軸,建立極坐標系,曲線的極坐標方程(1)寫出的普通方程和的直角坐標方程;(2)設(shè)點M在上,點N在上,求|MN|的最小值以及此時M的直角坐標.18.(12分)某公司打算引進一臺設(shè)備使用一年,現(xiàn)有甲、乙兩種設(shè)備可供選擇.甲設(shè)備每臺10000元,乙設(shè)備每臺9000元.此外設(shè)備使用期間還需維修,對于每臺設(shè)備,一年間三次及三次以內(nèi)免費維修,三次以外的維修費用均為每次1000元.該公司統(tǒng)計了曾使用過的甲、乙各50臺設(shè)備在一年間的維修次數(shù),得到下面的頻數(shù)分布表,以這兩種設(shè)備分別在50臺中的維修次數(shù)頻率代替維修次數(shù)發(fā)生的概率.維修次數(shù)23456甲設(shè)備5103050乙設(shè)備05151515(1)設(shè)甲、乙兩種設(shè)備每臺購買和一年間維修的花費總額分別為和,求和的分布列;(2)若以數(shù)學期望為決策依據(jù),希望設(shè)備購買和一年間維修的花費總額盡量低,且維修次數(shù)盡量少,則需要購買哪種設(shè)備?請說明理由.19.(12分)已知三棱錐P-ABC(如圖一)的平面展開圖(如圖二)中,四邊形ABCD為邊長等于的正方形,和均為正三角形,在三棱錐P-ABC中:(1)證明:平面平面ABC;(2)若點M在棱PA上運動,當直線BM與平面PAC所成的角最大時,求直線MA與平面MBC所成角的正弦值.20.(12分)己知點,分別是橢圓的上頂點和左焦點,若與圓相切于點,且點是線段靠近點的三等分點.求橢圓的標準方程;直線與橢圓只有一個公共點,且點在第二象限,過坐標原點且與垂直的直線與圓相交于,兩點,求面積的取值范圍.21.(12分)已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程和曲線的直角坐標方程;(2)設(shè)點,直線與曲線交于,兩點,求的值.22.(10分)已知點,直線與拋物線交于不同兩點、,直線、與拋物線的另一交點分別為兩點、,連接,點關(guān)于直線的對稱點為點,連接、.(1)證明:;(2)若的面積,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

設(shè)雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,設(shè),得,求出的值,即得解.【詳解】設(shè)雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,所以,.設(shè),則,又.故,所以.故選:D【點睛】本題主要考查雙曲線的簡單幾何性質(zhì),考查余弦定理解三角形和三角形面積的計算,意在考查學生對這些知識的理解掌握水平.2、D【解析】

畫出可行域,計算出原點到可行域上的點的最大距離,由此求得的最大值.【詳解】畫出可行域如下圖所示,其中,由于,,所以,所以原點到可行域上的點的最大距離為.所以的最大值為.故選:D【點睛】本小題主要考查根據(jù)可行域求非線性目標函數(shù)的最值,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于基礎(chǔ)題.3、C【解析】

由橢圓的定義以及雙曲線的定義、離心率公式化簡,結(jié)合基本不等式即可求解.【詳解】設(shè)橢圓的長半軸長為,雙曲線的半實軸長為,半焦距為,則,,設(shè)由橢圓的定義以及雙曲線的定義可得:,則當且僅當時,取等號.故選:C.【點睛】本題主要考查了橢圓的定義以及雙曲線的定義、離心率公式,屬于中等題.4、D【解析】令x=1得a=1.故原式=.的通項,由5-2r=1得r=2,對應(yīng)的常數(shù)項=80,由5-2r=-1得r=3,對應(yīng)的常數(shù)項=-40,故所求的常數(shù)項為40,選D解析2.用組合提取法,把原式看做6個因式相乘,若第1個括號提出x,從余下的5個括號中選2個提出x,選3個提出;若第1個括號提出,從余下的括號中選2個提出,選3個提出x.故常數(shù)項==-40+80=405、A【解析】

根據(jù)正弦定理可得,求出,根據(jù)平方關(guān)系求出.由兩端平方,求的最大值,根據(jù)三角形面積公式,求出面積的最大值.【詳解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點,且,,即,即,,當且僅當時,等號成立.的面積,所以面積的最大值為.故選:.【點睛】本題考查正、余弦定理、不等式、三角形面積公式和向量的數(shù)量積運算,屬于中檔題.6、B【解析】

執(zhí)行給定的程序框圖,輸入,逐次循環(huán),找到計算的規(guī)律,即可求解.【詳解】由題意,執(zhí)行給定的程序框圖,輸入,可得:第1次循環(huán):;第2次循環(huán):;第3次循環(huán):;第10次循環(huán):,此時滿足判定條件,輸出結(jié)果,故選:B.【點睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計算與輸出,其中解答中認真審題,逐次計算,得到程序框圖的計算功能是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.7、A【解析】

設(shè)直線為,用表示出,,求出,令,利用導數(shù)求出單調(diào)區(qū)間和極小值、最小值,即可求出的最小值.【詳解】解:設(shè)直線為,則,,而滿足,那么設(shè),則,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以故選:.【點睛】本題考查導數(shù)知識的運用:求單調(diào)區(qū)間和極值、最值,考查化簡整理的運算能力,正確求導確定函數(shù)的最小值是關(guān)鍵,屬于中檔題.8、C【解析】

求出函數(shù)定義域,在定義域內(nèi)確定函數(shù)的單調(diào)性,利用單調(diào)性解不等式.【詳解】由得,在時,是增函數(shù),是增函數(shù),是增函數(shù),∴是增函數(shù),∴由得,解得.故選:C.【點睛】本題考查函數(shù)的單調(diào)性,考查解函數(shù)不等式,解題關(guān)鍵是確定函數(shù)的單調(diào)性,解題時可先確定函數(shù)定義域,在定義域內(nèi)求解.9、B【解析】

還原幾何體可知原幾何體為半個圓柱和一個四棱錐組成的組合體,分別求解兩個部分的體積,加和得到結(jié)果.【詳解】由三視圖還原可知,原幾何體下半部分為半個圓柱,上半部分為一個四棱錐半個圓柱體積為:四棱錐體積為:原幾何體體積為:本題正確選項:【點睛】本題考查三視圖的還原、組合體體積的求解問題,關(guān)鍵在于能夠準確還原幾何體,從而分別求解各部分的體積.10、D【解析】

利用輔助角公式,化簡函數(shù)的解析式,再根據(jù)正弦函數(shù)的單調(diào)性,并采用整體法,可得結(jié)果.【詳解】因為,由,解得,即函數(shù)的增區(qū)間為,所以當時,增區(qū)間的一個子集為.故選D.【點睛】本題考查了輔助角公式,考查正弦型函數(shù)的單調(diào)遞增區(qū)間,重點在于把握正弦函數(shù)的單調(diào)性,同時對于整體法的應(yīng)用,使問題化繁為簡,難度較易.11、C【解析】

解出集合,再由含有個元素的集合,其真子集的個數(shù)為個可得答案.【詳解】解:由,得所以集合的真子集個數(shù)為個.故選:C【點睛】此題考查利用集合子集個數(shù)判斷集合元素個數(shù)的應(yīng)用,含有個元素的集合,其真子集的個數(shù)為個,屬于基礎(chǔ)題.12、C【解析】

求出,進而可求,即能求出向量夾角.【詳解】解:由題意知,.則所以,則向量與的夾角為.故選:C.【點睛】本題考查了向量的坐標運算,考查了數(shù)量積的坐標表示.求向量夾角時,通常代入公式進行計算.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)交集的定義即可寫出答案。【詳解】,,故填【點睛】本題考查集合的交集,需熟練掌握集合交集的定義,屬于基礎(chǔ)題。14、【解析】

結(jié)合等差數(shù)列的前項和公式,可得,求解即可.【詳解】由題意,,,因為,所以.故答案為:.【點睛】本題考查了等差數(shù)列的前項和公式及等差中項的應(yīng)用,考查了學生的計算求解能力,屬于基礎(chǔ)題.15、【解析】

利用,且周期為2,可得,得.【詳解】∵,且周期為2,∴,又當時,,∴,故答案為:【點睛】本題考查函數(shù)的周期性與對稱性的應(yīng)用,考查轉(zhuǎn)化能力,屬于基礎(chǔ)題.16、,【解析】

存在符號改任意符號,結(jié)論變相反.【詳解】命題是特稱命題,則為全稱命題,故將“”改為“”,將“”改為“”,故:,.故答案為:,.【點睛】本題考查全(特)稱命題.對全(特)稱命題進行否定的方法:(1)改寫量詞:全稱量詞改寫為存在量詞,存在量詞改寫為全稱量詞;(2)否定結(jié)論:對于一般命題的否定只需直接否定結(jié)論即可.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)的普通方程為,的直角坐標方程為.(2)最小值為,此時【解析】

(1)由的參數(shù)方程消去求得的普通方程,利用極坐標和直角坐標轉(zhuǎn)化公式,求得的直角坐標方程.(2)設(shè)出點的坐標,利用點到直線的距離公式求得最小值的表達式,結(jié)合三角函數(shù)的指數(shù)求得的最小值以及此時點的坐標.【詳解】(1)由題意知的參數(shù)方程為(為參數(shù))所以的普通方程為.由得,所以的直角坐標方程為.(2)由題意,可設(shè)點的直角坐標為,因為是直線,所以的最小值即為到的距離,因為.當且僅當時,取得最小值為,此時的直角坐標為即.【點睛】本小題主要考查參數(shù)方程化為普通方程,考查極坐標方程化為直角坐標方程,考查利用曲線參數(shù)方程求解點到直線距離的最小值問題,屬于中檔題.18、(1)分布列見解析,分布列見解析;(2)甲設(shè)備,理由見解析【解析】

(1)的可能取值為10000,11000,12000,的可能取值為9000,10000,11000,12000,計算概率得到分布列;(2)計算期望,得到,設(shè)甲、乙兩設(shè)備一年內(nèi)的維修次數(shù)分別為,,計算分布列,計算數(shù)學期望得到答案.【詳解】(1)的可能取值為10000,11000,12000,,因此的分布如下100001100012000的可能取值為9000,10000,11000,12000,,,因此的分布列為如下9000100001100012000(2)設(shè)甲、乙兩設(shè)備一年內(nèi)的維修次數(shù)分別為,的可能取值為2,3,4,5,,,則的分布列為2345的可能取值為3,4,5,6,,,則的分布列為3456由于,,因此需購買甲設(shè)備【點睛】本題考查了數(shù)學期望和分布列,意在考查學生的計算能力和應(yīng)用能力.19、(1)見解析(2)【解析】

(1)設(shè)的中點為,連接.由展開圖可知,,.為的中點,則有,根據(jù)勾股定理可證得,則平面,即可證得平面平面.(2)由線面成角的定義可知是直線與平面所成的角,且,最大即為最短時,即是的中點建立空間直角坐標系,求出與平面的法向量利用公式即可求得結(jié)果.【詳解】(1)設(shè)AC的中點為O,連接BO,PO.由題意,得,,.在中,,O為AC的中點,,在中,,,,,.,平面,平面ABC,平面PAC,平面平面ABC.(2)由(1)知,,,平面PAC,是直線BM與平面PAC所成的角,且,當OM最短時,即M是PA的中點時,最大.由平面ABC,,,,于是以O(shè)C,OB,OD所在直線分別為x軸,y軸,z軸建立如圖示空間直角坐標系,則,,設(shè)平面MBC的法向量為,直線MA與平面MBC所成角為,則由得:.令,得,,即.則.直線MA與平面MBC所成角的正弦值為.【點睛】本題考查面面垂直的證明,考查線面成角問題,借助空間向量是解決線面成角問題的關(guān)鍵,難度一般.20、;.【解析】

連接,由三角形相似得,,進而得出,,寫出橢圓的標準方程;由得,,因為直線與橢圓相切于點,,解得,,因為點在第二象限,所以,,所以,設(shè)直線與垂直交于點,則是點到直線的距離,設(shè)直線的方程為,則,求出面積的取值范圍.【詳解】解:連接,由可得,,,橢圓的標準方程;由得,,因為直線與橢圓相切于點,所以,即,解得,,即點的坐標為,因為點在第二象限,所以,,所以,所以點的坐標為,設(shè)直線與垂直交于點,則是點到直線的距離,設(shè)直線的方程為,則,當且僅當,即時,有最大值,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論