8.3簡單幾何體的表面積與體積_第1頁
8.3簡單幾何體的表面積與體積_第2頁
8.3簡單幾何體的表面積與體積_第3頁
8.3簡單幾何體的表面積與體積_第4頁
8.3簡單幾何體的表面積與體積_第5頁
已閱讀5頁,還剩5頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

§8.3簡單幾何體的表面積與體積幾何體表面積體積說明圖示柱體棱柱S棱柱=S側+2S底V棱柱=ShS為棱柱的底面積,h為棱柱的高圓柱底面積:S底=2πr2側面積:S側=2πrl表面積:S=2πr(r+l)V圓柱=Sh=πr2h圓柱底面圓的半徑為r,面積為S,高為h錐體棱錐S棱錐=S側+S底V棱錐=eq\f(1,3)ShS為棱錐的底面積,h為棱錐的高圓錐底面積:S底=πr2側面積:S側=πrl表面積:S=πr(r+l)V圓錐=eq\f(1,3)Sh=eq\f(1,3)πr2h圓錐底面圓的半徑為r,面積為S,高為h臺體棱臺S棱臺=S側+S上底+S下底V棱臺=eq\f(1,3)(S′+eq\r(S′S)+S)hS′,S分別為棱臺的上、下底面面積,h為棱臺的高圓臺上底面面積:S上底=πr′2下底面面積:S下底=πr2側面積:S側=π(r′l+rl)表面積:S=π(r′2+r2+r′l+rl)V圓臺=eq\f(1,3)(S+eq\r(SS′)+eq\r(S′))h=eq\f(1,3)π(r2+rr′+r′2)h圓臺上底面圓的半徑為r′,面積為S′,下底面圓的半徑為r,面積為S,高為h球體S球=4πR2V球=eq\f(4,3)πR3R為球的半徑題型一:幾何體的表面積和體積【典例】1.已知圓柱的上、下底面的中心分別為,,過直線的平面截該圓柱所得的截面是面積為8的正方形,則該圓柱的表面積為A. B. C. D.【答案】B【詳解】分析:首先根據正方形的面積求得正方形的邊長,從而進一步確定圓柱的底面圓半徑與圓柱的高,從而利用相關公式求得圓柱的表面積.詳解:根據題意,可得截面是邊長為的正方形,結合圓柱的特征,可知該圓柱的底面為半徑是的圓,且高為,所以其表面積為,故選B.2.已知一個圓錐的底面半徑為6,其體積為則該圓錐的側面積為.【答案】【分析】利用體積公式求出圓錐的高,進一步求出母線長,最終利用側面積公式求出答案.【詳解】∵∴∴∴.故答案為:.3.已知是球的球面上兩點,,為該球面上的動點.若三棱錐體積的最大值為36,則球的表面積為()A. B. C. D.【答案】C【詳解】

如圖所示,當點C位于垂直于面的直徑端點時,三棱錐的體積最大,設球的半徑為,此時,故,則球的表面積為,故選C.4.已知圓錐PO的底面半徑為,O為底面圓心,PA,PB為圓錐的母線,,若的面積等于,則該圓錐的體積為(

)A. B. C. D.【答案】B【分析】根據給定條件,利用三角形面積公式求出圓錐的母線長,進而求出圓錐的高,求出體積作答.【詳解】在中,,而,取中點,連接,有,如圖,,,由的面積為,得,解得,于是,所以圓錐的體積.故選:B5.在正四棱臺中,,則該棱臺的體積為.【答案】/【分析】結合圖像,依次求得,從而利用棱臺的體積公式即可得解.【詳解】如圖,過作,垂足為,易知為四棱臺的高,因為,則,故,則,所以所求體積為.故答案為:.6.底面邊長為4的正四棱錐被平行于其底面的平面所截,截去一個底面邊長為2,高為3的正四棱錐,所得棱臺的體積為.【答案】【分析】方法一:割補法,根據正四棱錐的幾何性質以及棱錐體積公式求得正確答案;方法二:根據臺體的體積公式直接運算求解.【詳解】方法一:由于,而截去的正四棱錐的高為,所以原正四棱錐的高為,所以正四棱錐的體積為,截去的正四棱錐的體積為,所以棱臺的體積為.方法二:棱臺的體積為.故答案為:.【方法總結】求幾何體體積的常用方法:①公式法:直接代入公式求解;②等積法:例如四面體的任何一個面都可以作為底面,只需選用底面積和高都易求的形式即可;③補體法:將幾何體補成易求解的幾何體,如棱錐補成棱柱,三棱柱補成四棱柱等;④分割法:將幾何體分割成易求解的幾部分,分別求體積.7.甲、乙兩個圓錐的母線長相等,側面展開圖的圓心角之和為,側面積分別為和,體積分別為和.若,則(

)A. B. C. D.【答案】C【分析】設母線長為,甲圓錐底面半徑為,乙圓錐底面圓半徑為,根據圓錐的側面積公式可得,再結合圓心角之和可將分別用表示,再利用勾股定理分別求出兩圓錐的高,再根據圓錐的體積公式即可得解.【詳解】解:設母線長為,甲圓錐底面半徑為,乙圓錐底面圓半徑為,則,所以,又,則,所以,所以甲圓錐的高,乙圓錐的高,所以.8.南水北調工程緩解了北方一些地區水資源短缺問題,其中一部分水蓄入某水庫.已知該水庫水位為海拔時,相應水面的面積為;水位為海拔時,相應水面的面積為,將該水庫在這兩個水位間的形狀看作一個棱臺,則該水庫水位從海拔上升到時,增加的水量約為()(

)A. B. C. D.【答案】C【分析】根據題意只要求出棱臺的高,即可利用棱臺的體積公式求出.【詳解】依題意可知棱臺的高為(m),所以增加的水量即為棱臺的體積.棱臺上底面積,下底面積,∴.故選:C.題型二:內切球、外接球問題【典例】1.已知正三棱臺的高為1,上、下底面邊長分別為和,其頂點都在同一球面上,則該球的表面積為(

)A. B. C. D.【答案】A【分析】根據題意可求出正三棱臺上下底面所在圓面的半徑,再根據球心距,圓面半徑,以及球的半徑之間的關系,即可解出球的半徑,從而得出球的表面積.【詳解】設正三棱臺上下底面所在圓面的半徑,所以,即,設球心到上下底面的距離分別為,球的半徑為,所以,,故或,即或,解得符合題意,所以球的表面積為.【方法總結】1.球的截面問題:如圖,設小圓的圓心為o′,半徑為r,球的球心為o,半徑為R,則①oo′⊥圓面o′;②R2=r2+oo′2.2.(1)球與多面體:①多面體的外接球:多面體的頂點均在球面上;球心到各個頂點距離相等(球半徑);②多面體的內切球:多面體的各面均與球面相切;球心到各面距離相等(球半徑)(2)球與旋轉體:①旋轉體的外接球:旋轉體的頂點在球面上;底面為球截面;球心在旋轉軸上.②旋轉體的內切球:旋轉體的各面均與球面相切;球心在旋轉軸上.2.已知A,B,C是半徑為1的球O的球面上的三個點,且,則三棱錐的體積為(

)A. B. C. D.【答案】A【分析】由題可得為等腰直角三角形,得出外接圓的半徑,則可求得到平面的距離,進而求得體積.【詳解】,為等腰直角三角形,,則外接圓的半徑為,又球的半徑為1,設到平面的距離為,則,所以.3.已知正四棱錐的側棱長為l,其各頂點都在同一球面上.若該球的體積為,且,則該正四棱錐體積的取值范圍是(

)A. B. C. D.【答案】C【分析】設正四棱錐的高為,由球的截面性質列方程求出正四棱錐的底面邊長與高的關系,由此確定正四棱錐體積的取值范圍.【詳解】∵球的體積為,所以球的半徑,[方法一]:導數法設正四棱錐的底面邊長為,高為,則,,所以,所以正四棱錐的體積,所以,當時,,當時,,所以當時,正四棱錐的體積取最大值,最大值為,又時,,時,,所以正四棱錐的體積的最小值為,所以該正四棱錐體積的取值范圍是.[方法二]:基本不等式法由方法一故所以當且僅當取到,當時,得,則當時,球心在正四棱錐高線上,此時,,正四棱錐體積,故該正四棱錐體積的取值范圍是4.設是同一個半徑為4的球的球面上四點,為等邊三角形且其面積為,則三棱錐體積的最大值為A. B. C. D.【答案】B【詳解】分析:作圖,D為MO與球的交點,點M為三角形ABC的中心,判斷出當平面時,三棱錐體積最大,然后進行計算可得.詳解:如圖所示,點M為三角形ABC的中心,E為AC中點,當平面時,三棱錐體積最大此時,,點M為三角形ABC的中心中,有5.在正方體中,E,F分別為AB,的中點,以EF為直徑的球的球面與該正方體的棱共有個公共點.【答案】12【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論