




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
機器人運動學串聯操作臂由運動鏈和連桿組成,除了末端連桿外,所有連桿都包含兩個運動副和運動副的軸(移動副軸為其移動方向)。連桿從基礎連桿(機座)到末端執行器以此編號為0,1,…,n,連接第i個連桿和第i-1個連桿的運動副計為第i個關節,關節可以是R或P。運動學正問題桿件參數的意義坐標系的建立原則桿件坐標系間的變換過程-相鄰關節坐標系的齊次變換機器人的運動學方程
桿件參數的意義-和
li
關節Ai軸和Ai+1軸線公法線的長度關節i軸線與i+1軸線在垂直于li平面內的夾角
串聯關節,每個桿件最多與2個關節相連,如Ai與Ai-1和Ai+1相連。由運動學的觀點來看,桿件的作用僅在于它能保持其兩端關節間的形態不變。這種形態由兩個參數決定,一是桿件的長度
li(),一個是桿件的扭轉角
AiAi+1桿件參數的意義-和
li與li-1的公法線長度
li與li-1的延關節i為軸線的夾角確定桿件相對位置關系,由另外2個參數決定,一個是桿件的距離:,一個是桿件的回轉角:
AiAi+1Ai-1坐標系的建立原則AiAi+1Ai-1為右手坐標系原點Oi:設在li與Ai+1軸線的交點上Zi軸:與Ai+1關節軸重合,指向任意Xi軸:與公法線li重合,指向沿li由Ai軸線指向Ai+1軸線Yi軸:按右手定則li
—沿xi
軸,zi-1軸與xi
軸交點到0i的距離αi—繞xi軸,由zi-1轉向zidi
—沿zi-1軸,zi-1軸和xi交點至∑0i–1坐標系原點的距離θi—繞zi-1軸,由xi-1轉向xi第0號坐標系在機座上的位置和方向可以任選,只要Z0軸沿著第一關節運動軸;第N坐標系可以放在手的任何位置,只要Xn軸與Zn-1軸方向垂直。特殊情況坐標系的建立原則
Oi—Ai與Ai+1關節軸線的交點
Zi—Ai+1軸線
Xi—Zi和Zi-1構成的面的法線
Yi—右手定則
xiyi兩個關節軸相交兩個關節軸線平行先建立∑0i-1然后建立∑0i+1最后建立∑0i
桿件坐標系間的變換過程
-相鄰關節坐標系的齊次變換將xi-1軸繞zi-1軸轉
i
角度,將其與xi軸平行;沿zi-1軸平移距離di
,使xi-1軸與xi軸重合;沿xi軸平移距離li,使兩坐標系原點重合;繞xi
軸轉
i角度,兩坐標系完全重合.AiAi+1Ai-1根據以上變換過程,相鄰坐標系i和i-1的D-H變換矩陣為:機器人的運動學方程
D-H變換矩陣舉例:Stanford機器人A1A2A3A4A5A6d1z1x1y1O1d2z2x2y2O2z3y3x3O3y4z4x4O4z5y5x5O5d3z6x6y6O6d6z0y0x0O0為右手坐標系原點Oi:Ai與Ai+1關節軸線的交點Zi軸:與Ai+1關節軸重合,指向任意Xi軸:Zi和Zi-1構成的面的法線Yi軸:按右手定則Li—沿xi
軸,zi-1軸與xi
軸交點到0i的距離αi—繞xi軸,由zi-1轉向zidi
—沿zi-1軸,zi-1軸和xi交點至∑0i–1坐標系原點的距離θi—繞zi-1軸,由xi-1轉向xi解:用未知的逆變換逐次左乘,由乘得的矩陣方程的元素決定未知數,即用逆變換把一個未知數由矩陣方程的右邊移到左邊求解這個未知數把下一個未知數移到左邊重復上述過程,直到解出所有解運動學逆問題解法Paul等人提出的方法:Paul等人提出的方法斯坦福機器人運動學逆問題解式中:
由兩端矩陣對應元素相等可得:
作三角變換:
式中:
得到:
即有:
()
根據同樣的方法,利用矩陣元素相等建立的相關的方程組,可得到其它各關節變量如下:
運動學逆問題多解性,剔除多余解原則根據關節運動空間合適的解選擇一個與前一采樣時間最接近的解根據避障要求得選擇合適的解逐級剔除多余解可解性所有具有轉動和移動關節的系統,在一個單一串聯中總共有6個(或小于6個)自由度時,是可解的,一般是數值解,它不是解析表達式,而是利用數值迭代原理求解,它的計算量要比解析解大如若干個關節軸線相交和或多個關節軸線等于0或90°的情況下,具有6個自由度的機器人可得到解析解機器人的雅可比矩陣定義:操作速度與關節速度的線性變換,是關節空間向操作空間運動速度的傳動比。N自由度機器人關節向量:機器人在基礎坐標系中的位置姿態:簡寫為:雅可比矩陣的求法(構造法)n個關節的機器人,其雅可比矩陣是6Xn階矩陣。前3行代表線速度v的傳遞比,后3行代表角速度的傳遞比。因此:可將J(Q)分塊:求JLi,JAi(1)第i個關節為移動關節第i個關節為轉動關節確定設O、Oi-1、On分別為基礎坐標系,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年利用溫度變化加工機械項目資金需求報告代可行性研究報告
- 2025軟件授權使用合同范本
- 2025年電梯安裝安全合同范本
- 2025年海南省新合同范本
- 竹材采運合同法律風險與規避考核試卷
- 報紙新聞的公共衛生新聞深度考核試卷
- 2025標準版房屋買賣合同范本
- 2025企業短期用工合同協議
- 2025精簡版技術合同
- 2025《設備租賃合同范本》
- 人教PEP六年級英語下冊Unit1Howtallareyou大單元整體教學設計
- 個體工商戶公司章程模板
- 心理發展與教育智慧樹知到期末考試答案章節答案2024年浙江師范大學
- 工作計劃進度表(自動甘特圖)電子表格模板
- 網絡營銷:推廣與策劃 第3版 課件 項目4 搜索引擎營銷(知識基石)
- 期中試卷(試題)-2023-2024學年六年級下冊數學人教版
- 全國行政區域身份證代碼表(EXCEL版)
- MOOC 國情分析與商業設計-暨南大學 中國大學慕課答案
- 腰椎間盤突出疑難病例討論
- 國家衛生部《綜合醫院分級管理標準》
- DB64++1996-2024+燃煤電廠大氣污染物排放標準
評論
0/150
提交評論