




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省臺州市臨海市2023年數學九年級第一學期期末考試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每題4分,共48分)1.化簡的結果是()A. B. C. D.2.-4的相反數是()A. B. C.4 D.-43.如果將拋物線平移,使平移后的拋物線與拋物線重合,那么它平移的過程可以是()A.向右平移4個單位,向上平移11個單位B.向左平移4個單位,向上平移11個單位C.向左平移4個單位,向上平移5個單位D.向右平移4個單位,向下平移5個單位.4.把拋物線向下平移1個單位再向右平移一個單位所得到的的函數拋物線的解析式是()A. B. C. D.5.下列結論正確的是()A.三角形的外心是三條角平分線的交點B.平分弦的直線垂直于弦C.弦的垂直平分線必平分弦所對的兩條弧D.直徑是圓的對稱軸6.如圖,向量與均為單位向量,且OA⊥OB,令=+,則=()A.1 B. C. D.27.下列事件中,是隨機事件的是()A.兩條直線被第三條直線所截,同位角相等B.任意一個四邊形的外角和等于360°C.早上太陽從西方升起D.平行四邊形是中心對稱圖形8.某車庫出口安裝的欄桿如圖所示,點A是欄桿轉動的支點,點E是欄桿兩段的聯結點.當車輛經過時,欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=1.18米,AE=1.2米,那么適合該地下車庫的車輛限高標志牌為()(參考數據:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A. B. C. D.9.如圖,在矩形中,,在上取一點,沿將向上折疊,使點落在上的點處,若四邊形與矩形相似,則的長為()A. B. C. D.110.2020的相反數是()A. B. C.-2020 D.202011.下列四個結論,①過三點可以作一個圓;②圓內接四邊形對角相等;③平分弦的直徑垂直于弦;④相等的圓周角所對的弧也相等;不正確的是()A.②③ B.①③④ C.①②④ D.①②③④12.方程的根是()A.x=2 B.x=0 C.x1=0,x2=-2 D.x1=0,x2=2二、填空題(每題4分,共24分)13.已知x=2是方程x2-a=0的解,則a=_______.14.在Rt△ABC中,∠C=90°,若AC=3,AB=5,則cosB的值為__________.15.如圖,將繞頂點A順時針旋轉后得到,且為的中點,與相交于,若,則線段的長度為________.16.將拋物線C1:y=x2﹣4x+1先向左平移3個單位,再向下平移2個單位得到將拋物線C2,則拋物線C2的解析式為:_____.17.如圖,港口A在觀測站O的正東方向,OA=4.某船從港口A出發,沿北偏東15°方向航行一段距離后到達B處,此時從觀測站O處測得該船位于北偏東60°的方向,則該船航行的距離(即AB的長)為____.
18.如圖,若△ADE∽△ACB,且=,DE=10,則BC=________三、解答題(共78分)19.(8分)解下列一元二次方程.(1)x2+x-6=1;(2)2(x-1)2-8=1.20.(8分)已知反比例函數的圖象過點P(-1,3),求m的值和該反比例函數的表達式.21.(8分)一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時發生了側翻沉船事故,立即發出了求救信號,一艘在港口正東方向的海警船接到求救信號,測得事故船在它的北偏東37°方向,馬上以40海里每小時的速度前往救援,(1)求點C到直線AB的距離;(2)求海警船到達事故船C處所需的大約時間.(溫馨提示:sin53°≈0.8,cos53°≈0.6)22.(10分)一個不透明的箱子里放有2個白球,1個黑球和1個紅球,它們除顏色外其余都相同.箱子里摸出1個球后不放回,搖勻后再摸出1個球,求兩次摸到的球都是白球的概率。(請用列表或畫樹狀圖等方法)23.(10分)已知:如圖,在△ABC中,AD是∠BAC的平分線,∠ADE=∠B.求證:(1)△ABD∽△ADE;(2)AD2=AE?AB.24.(10分)如圖,在中,以為直徑的交于點,連接,.(1)求證:是的切線;(2)若,求點到的距離.25.(12分)如圖:反比例函數的圖象與一次函數的圖象交于、兩點,其中點坐標為.(1)求反比例函數與一次函數的表達式;(2)觀察圖象,直接寫出當時,自變量的取值范圍;(3)一次函數的圖象與軸交于點,點是反比例函數圖象上的一個動點,若,求此時點的坐標.26.某商店經營一種小商品,進價為2.5元,據市場調查,銷售單價是13.5元時平均每天銷售量是500件,而銷售單價每降低1元,平均每天就可以多售出100件.(1)假設每件商品降低x元,商店每天銷售這種小商品的利潤是y元,請你寫出y與x的之間的函數關系式,并注明x的取值范圍;(2)每件小商品銷售價是多少元時,商店每天銷售這種小商品的利潤最大;最大利潤是多少.(注:銷售利潤=銷售收入-購進成本)
參考答案一、選擇題(每題4分,共48分)1、D【解析】將除法變為乘法,化簡二次根式,再用乘法分配律展開計算即可.【詳解】原式=×=×(+1)=2+.故選D.【點睛】本題主要考查二次根式的加減乘除混合運算,掌握二次根式的混合運算法則是解題關鍵.2、C【分析】根據相反數的定義即可求解.【詳解】-4的相反數是4,故選C.【點晴】此題主要考查相反數,解題的關鍵是熟知相反數的定義.3、D【分析】根據平移前后的拋物線的頂點坐標確定平移方法即可得解.【詳解】解:拋物線的頂點坐標為:(0,),∵,則頂點坐標為:(4,),∴頂點由(0,)平移到(4,),需要向右平移4個單位,再向下平移5個單位,故選擇:D.【點睛】本題考查了二次函數圖象與幾何變換,此類題目,利用頂點的變化確定拋物線解析式更簡便.4、B【分析】根據二次函數圖象左加右減,上加下減的平移規律進行解答即可.【詳解】解:拋物線向下平移1個單位,得:,再向右平移1個單位,得:,即:,故選B.【點睛】主要考查的是函數圖象的平移,用平移規律“左加右減,上加下減”直接代入函數解析式求得平移后的函數解析式.5、C【分析】根據三角形的外心定義可以對A判斷;根據垂徑定理的推論即可對B判斷;根據垂徑定理即可對C判斷;根據對稱軸是直線即可對D判斷.【詳解】A.三角形的外心是三邊垂直平分線的交點,所以A選項錯誤;B.平分弦(不是直徑)的直徑垂直于弦,所以B選項錯誤;C.弦的垂直平分線必平分弦所對的兩條弧,所以C選項正確;D.直徑所在的直線是圓的對稱軸,所以D選項錯誤.故選:C.【點睛】本題考查了三角形的外接圓與外心、垂徑定理、圓的有關概念,解決本題的關鍵是掌握圓的知識.6、B【解析】根據向量的運算法則可得:=,故選B.7、A【分析】根據隨機事件的概念對每一事件進行分析.【詳解】選項A,只有當兩條直線為平行線時,同位角才相等,故不確定為隨機事件.選項B,不可能事件.選項C,不可能事件選項D,必然事件.故選A【點睛】本題考查了隨機事件的概念.8、A【分析】延長BA、FE,交于點D,根據AB⊥BC,EF∥BC知∠ADE=90°,由∠AEF=143°知∠AED=37°,根據sin∠AED,AE=1.2米求出AD的長,繼而可得BD的值,從而得出答案.【詳解】如圖,延長BA、FE,交于點D.∵AB⊥BC,EF∥BC,∴BD⊥DF,即∠ADE=90°.∵∠AEF=143°,∴∠AED=37°.在Rt△ADE中,∵sin∠AED,AE=1.2米,∴AD=AE?sin∠AED=1.2×sin37°≈0.72(米),則BD=AB+AD=1.18+0.72=1.9(米).故選:A.【點睛】本題考查了解直角三角形的應用,解題的關鍵是結合題意構建直角三角形,并熟練掌握正弦函數的概念.9、C【分析】可設AD=x,由四邊形EFDC與矩形ABCD相似,根據相似多邊形對應邊的比相等列出比例式,求解即可.【詳解】解:∵AB=1,可得AF=BE=1,
設DF=x,則AD=x+1,FE=1,
∵四邊形EFDC與矩形ABCD相似,∴,即:,解得,(不合題意舍去),經檢驗是原方程的解,∴DF的長為,故選C.【點睛】本題考查了翻折變換(折疊問題),相似多邊形的性質,本題的關鍵是根據四邊形EFDC與矩形ABCD相似得到比例式.10、C【分析】根據相反數的定義選擇即可.【詳解】2020的相反數是-2020,故選C.【點睛】本題考查相反數的定義,注意區別倒數,絕對值,負倒數等知識,掌握概念是關鍵.11、D【分析】根據確定圓的條件、圓的內接四邊形的性質、垂徑定理及圓心角、弧、弦的關系定理逐一判斷即可得答案.【詳解】過不在同一條直線上的三點可以作一個圓,故①錯誤,圓的內接四邊形對角互補,故②錯誤,平分弦(非直徑)的直徑垂直于弦,并且平分弦所對的弧,故③錯誤,在同圓或等圓中,相等的圓周角所對的弧也相等,故④錯誤,綜上所述:不正確的結論有①②③④,故選:D.【點睛】本題考查確定圓的條件、圓的內接四邊形的性質、垂徑定理及圓心角、弧、弦的關系定理,熟練掌握相關性質及定理是解題關鍵.12、C【解析】試題解析:x(x+1)=0,
?x=0或x+1=0,
解得x1=0,x1=-1.
故選C.二、填空題(每題4分,共24分)13、4【分析】將x=2代入方程計算即可求出a的值.【詳解】解:將x=2代入方程得:4-a=0,解得:a=4,故答案為:4.【點睛】本題考查了一元二次方程的解,方程的解即為能使方程左右兩邊相等的未知數的值.14、【分析】先根據勾股定理求的BC的長,再根據余弦的定義即可求得結果.【詳解】由題意得則故答案為:點睛:勾股定理的應用是初中數學極為重要的知識,與各個知識點聯系極為容易,因而是中考的熱點,在各種題型中均有出現,一般難度不大,需特別注意.15、【分析】根據旋轉的性質可知△ACC1為等邊三角形,進而得出BC1=CC1=AC1=2,△ADC1是含20°的直角三角形,得到DC1的長,利用線段的和差即可得出結論.【詳解】根據旋轉的性質可知:AC=AC1,∠CAC1=60°,B1C1=BC,∠B1C1A=∠C,∴△ACC1為等邊三角形,∴∠AC1C=∠C=60°,CC1=AC1.∵C1是BC的中點,∴BC1=CC1=AC1=2,∴∠B=∠C1AB=20°.∵∠B1C1A=∠C=60°,∴∠ADC1=180°-(∠C1AB+∠B1C1A)=180°-(20°+60°)=90°,∴DC1=AC1=1,∴B1D=B1C1-DC1=4-1=2.故答案為:2.【點睛】本題考查了旋轉的性質以及直角三角形的性質,得出△ADC1是含20°的直角三角形是解答本題的關鍵.16、y=(x+1)2﹣1【分析】先確定拋物線C1:y=x2﹣4x+1的頂點坐標為(2,﹣3),再利用點平移的坐標變換規律,把點(2,﹣3)平移后對應點的坐標為(﹣1,﹣1),然后根據頂點式寫出平移后的拋物線解析式.【詳解】解:拋物線C1:y=x2﹣4x+1=(x﹣2)2﹣3的頂點坐標為(2,﹣3),把點(2,﹣3)先向左平移3個單位,再向下平移2個單位后所得對應點的坐標為(-1,﹣1),所以平移后的拋物線的解析式為y=(x+1)2﹣1,故答案為y=(x+1)2﹣1.【點睛】此題主要考查二次函數的平移,解題的關鍵是熟知二次函數平移的特點.17、1【解析】過點A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=1,再由△ABD是等腰直角三角形,得出BD=AD=1,則AB=AD=1.【詳解】如圖,過點A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=1.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB-∠AOB=75°-30°=45°,∴BD=AD=1,∴AB=AD=1.即該船航行的距離(即AB的長)為1.故答案為1.【點睛】本題考查了解直角三角形的應用-方向角問題,難度適中,作出輔助線構造直角三角形是解題的關鍵.18、15【分析】根據相似三角形的性質,列出比例式即可解決問題.【詳解】解:∵△ADE∽△ACB,∴,DE=10,∴,∴.【點睛】本題考查了相似三角形的性質,解題的關鍵是熟練掌握相似三角形的性質.三、解答題(共78分)19、(1);(2)【分析】(1)利用因式分解法解一元二次方方程;(2)用直接開平方法解一元二次方程.【詳解】解:(1)x2+x-6=1;∴(2)2(x-1)2-8=1.∴【點睛】本題考查直接開平方法和因式分解法解一元二次方程,掌握解題技巧正確計算是本題的解題關鍵.20、2;.【分析】把點P的坐標代入函數解析式求得m的值即可【詳解】解:把點P(-1,3)代入,得.解得.把m=2代入,得,即.∴反比例函數的表達式為.【點睛】本題考查了待定系數法確定函數關系式,反比例函數圖象上點的坐標特征.難度不大,熟悉函數圖象的性質即可解題.21、(1)40海里;(2)小時.【分析】(1)作CD⊥AB,在Rt△ACD中,由∠CAD=30°知CD=AC,據此可得答案;(2)根據BC=求得BC的長,繼而可得答案.【詳解】解:(1)如圖,過點C作CD⊥AB交AB延長線于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴點C到直線AB距離CD=AC=40(海里).(2)在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到達事故船C處所需的時間大約為:50÷40=(小時).【點睛】此題主要考查解直角三角形的應用,解題的關鍵是熟知三角函數的定義.22、【分析】畫出樹形圖,即可求出兩次摸到的球都是白球的概率.【詳解】解:畫樹狀圖如下:
∴摸得兩次白球的概率=【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數與總情況數之比.23、(1)證明見解析;(2)證明見解析.【分析】(1)由AD是的平分線可得,又,則結論得證;(2)由(1)可得出結論.【詳解】證明:(1)是的平分線,,.∽;(2)∽,.【點睛】此題主要考查了相似三角形的判定與性質,證明∽是解題的關鍵.24、(1)見解析;(2)【分析】(1)由是的直徑可得,然后利用直角三角形的性質和角的等量代換可得,進而可得結論;(2)易證,于是可利用相似三角形的性質求出AB的長,進而可得AD的長,過作于,則,于是△OHC∽△ADC,然后再利用相似三角形的性質可求得OH的長,問題即得解決.【詳解】(1)證明:∵是的直徑,∴,∴,∵,∴,即,∴是的切線;(2)解:∵,,∴,∴,∴,解得:,∴,過作于,∵,∴,∴△OHC∽△ADC,∴,∴,∴點到的距離是.【點睛】本題考查了圓周角定理的推論、圓的切線的判定、相似三角形的判定和性質以及點到直線的距離等知識,屬于??碱}型,熟練掌握相似三角形的判定和性質是解本題的關鍵.25、(1),;(2)或;(3)(12,)或(-12,)【分析】(1)把A點坐標代入中求出k得到反比例函數解析式,把A點坐標代入中求出b得到一次函數解析式;(2)由函數圖象,寫出一次函數圖象在反比例函數圖象上方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 煤礦瓦斯抽采設備與設施課件
- 2025年版甲乙雙方石材交易合同范本
- 2025濟南市茶葉種植訂購合同
- 2025標準個人租房合同范本匯編
- 《文化旅游》課件
- 景區旅游市場營銷策略考核試卷
- 2024年09月江蘇連云港市贛榆區衛生健康委員會面向農村訂單定向醫學生招聘3人筆試歷年專業考點(難、易錯點)附帶答案詳解
- 《職業病防治現狀》課件
- 2025化肥訂購合同范本
- 《慢性阻塞性肺疾患》課件指南
- 《地理課堂教學技能訓練與應用》課件
- PLC在自動化生產線中的應用課件
- 第六單元《電的本領》單元教學設計(教學設計)-2023-2024學年四年級下冊科學青島版
- 超臨界CO2印刷電路板式換熱器流動與傳熱特性研究
- 《服務決定成敗》課件
- 汽車產業智能化升級路徑-深度研究
- 2025年金剛石工具項目可行性研究報告
- 醫療器械年度培訓計劃
- 《定投指數基金有效性的實證探析》17000字(論文)
- 門診醫療技術操作規范
- 23年貴州省資格復審委托書
評論
0/150
提交評論