浙江省溫州市瑞安市集云實驗學校2023年數學九年級第一學期期末質量跟蹤監視模擬試題含解析_第1頁
浙江省溫州市瑞安市集云實驗學校2023年數學九年級第一學期期末質量跟蹤監視模擬試題含解析_第2頁
浙江省溫州市瑞安市集云實驗學校2023年數學九年級第一學期期末質量跟蹤監視模擬試題含解析_第3頁
浙江省溫州市瑞安市集云實驗學校2023年數學九年級第一學期期末質量跟蹤監視模擬試題含解析_第4頁
浙江省溫州市瑞安市集云實驗學校2023年數學九年級第一學期期末質量跟蹤監視模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省溫州市瑞安市集云實驗學校2023年數學九年級第一學期期末質量跟蹤監視模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,在平面直角坐標系中,菱形的邊在軸的正半軸上,反比例函數的圖象經過對角線的中點和頂點.若菱形的面積為12,則的值為().A.6 B.5 C.4 D.32.某樹主干長出若干數目的枝干,每個枝干又長出同樣數目小分支,主干、枝干和小分支總數共57根,則主干長出枝干的根數為()A.7 B.8 C.9 D.103.一個不透明的袋子中有3個白球,4個黃球和5個紅球,這些球除顏色不同外,其他完全相同.從袋子中隨機摸出一個球,則它是黃球的概率是()A. B. C. D.4.如圖,該幾何體的主視圖是()A. B. C. D.5.如圖,BA=BC,∠ABC=80°,將△BDC繞點B逆時針旋轉至△BEA處,點E,A分別是點D,C旋轉后的對應點,連接DE,則∠BED為()A.50° B.55° C.60° D.65°6.已知反比例函數,下列結論中不正確的是()A.圖象必經過點 B.隨的增大而增大C.圖象在第二,四象限內 D.若,則7.如圖,線段AB是⊙O的直徑,弦,,則等于().A. B. C. D.8.如圖,已知小明、小穎之間的距離為3.6m,他們在同一盞路燈下的影長分別為1.8m,1.6m,已知小明、小穎的身高分別為1.8m,1.6m,則路燈的高為()A.3.4m B.3.5m C.3.6m D.3.7m9.如圖,為的直徑,為上一點,弦平分,交于點,,,則的長為()A.2.5 B.2.8 C.3 D.3.210.以下五個圖形中,是中心對稱圖形的共有()A.2個 B.3個 C.4個 D.5個11.若,則下列等式一定成立的是()A. B. C. D.12.二次函數y=x2﹣6x+m的圖象與x軸有兩個交點,若其中一個交點的坐標為(1,0),則另一個交點的坐標為()A.(﹣1,0) B.(4,0) C.(5,0) D.(﹣6,0)二、填空題(每題4分,共24分)13.圓內接正六邊形的邊長為6,則該正六邊形的邊心距為_____.14.若,則代數式的值為________________.15.二次函數(a,b,c為常數且a≠0)中的與的部分對應值如下表:013353現給出如下四個結論:①;②當時,的值隨值的增大而減小;③是方程的一個根;④當時,,其中正確結論的序號為:____.

16.如圖所示,等腰三角形,,,…,(為正整數)的一直角邊在軸上,雙曲線經過所有三角形的斜邊中點,,,…,,已知斜邊,則點的坐標為_________.17.如圖,圓心都在x軸正半軸上的半圓O1,半圓O2,…,半圓On與直線l相切.設半圓O1,半圓O2,…,半圓On的半徑分別是r1,r2,…,rn,則當直線l與x軸所成銳角為30°,且r1=1時,r2018=________.18.拋物線y=4x2﹣3x與y軸的交點坐標是_____.三、解答題(共78分)19.(8分)如圖,拋物線經過點A(1,0),B(5,0),C(0,)三點,頂點為D,設點E(x,y)是拋物線上一動點,且在x軸下方.(1)求拋物線的解析式;(2)當點E(x,y)運動時,試求三角形OEB的面積S與x之間的函數關系式,并求出面積S的最大值?(3)在y軸上確定一點M,使點M到D、B兩點距離之和d=MD+MB最小,求點M的坐標.20.(8分)如圖,△ABC中,AB=AC,BE⊥AC于E,D是BC中點,連接AD與BE交于點F,求證:△AFE∽△BCE.21.(8分)如圖,、交于點,,且平分.(1)求證:;(2)若,,,求的長.22.(10分)(1)計算:4sin260°+tan45°-8cos230°(2)在Rt△ABC中,∠C=90°.若∠A=30°,b=5,求a、c.23.(10分)在矩形中,,,點是邊上一點,交于點,點在射線上,且是和的比例中項.(1)如圖1,求證:;(2)如圖2,當點在線段之間,聯結,且與互相垂直,求的長;(3)聯結,如果與以點、、為頂點所組成的三角形相似,求的長.24.(10分)某商店購進一批成本為每件40元的商品,經調查發現,該商品每天的銷售量(件與銷售單價(元之間滿足一次函數關系,其圖象如圖所示.(1)求該商品每天的銷售量與銷售單價之間的函數關系式;(2)若商店要使銷售該商品每天獲得的利潤等于1000元,每天的銷售量應為多少件?(3)若商店按單價不低于成本價,且不高于65元銷售,則銷售單價定為多少元時,才能使銷售該商品每天獲得的利潤最大?最大利潤是多少元?25.(12分)已知,如圖,是的直徑,平分交平點.過點的切線交的延長線于.求證:.26.如圖,三角形是以為底邊的等腰三角形,點、分別是一次函數的圖象與軸、軸的交點,點在二次函數的圖象上,且該二次函數圖象上存在一點使四邊形能構成平行四邊形.(1)試求、的值,并寫出該二次函數表達式;(2)動點沿線段從到,同時動點沿線段從到都以每秒1個單位的速度運動,問:①當運動過程中能否存在?如果不存在請說明理由;如果存在請說明點的位置?②當運動到何處時,四邊形的面積最小?此時四邊形的面積是多少?

參考答案一、選擇題(每題4分,共48分)1、C【解析】首先設出A、C點的坐標,再根據菱形的性質可得D點坐標,再根據D點在反比例函數上,再結合面積等于12,解方程即可.【詳解】解:設點的坐標為,點的坐標為,則,點的坐標為,∴,解得,,故選:C.【點睛】本題主要考查反比例函數和菱形的性質,關鍵在于菱形的對角線相互平分且垂直.2、A【分析】分別設出枝干和小分支的數目,列出方程,解方程即可得出答案.【詳解】設枝干有x根,則小分支有根根據題意可得:解得:x=7或x=-8(不合題意,舍去)故答案選擇A.【點睛】本題考查的是一元二次方程的應用,解題關鍵是根據題目意思列出方程.3、B【分析】利用概率公式直接計算即可.【詳解】解:根據題意可得:袋子中有有3個白球,4個黃球和5個紅球,共12個,從袋子中隨機摸出一個球,它是黃色球的概率.故選B.【點睛】本題考查概率的計算,掌握公式正確計算是本題的解題關鍵.4、C【解析】找到從正面看所得到的圖形即可,注意所有的看到的棱都應表現在主視圖中.【詳解】解:從正面看易得是1個大正方形,大正方形左上角有個小正方形.故答案選:C.【點睛】本題主要考查了三視圖的知識,主視圖是從物體的正面看得到的視圖,難度適中.5、A【分析】首先根據旋轉的性質,得出∠CBD=∠ABE,BD=BE;其次結合圖形,由等量代換,得∠EBD=∠ABC;最后根據等腰三角形的性質,得出∠BED=∠BDE,利用三角形內角和定理求解即可.【詳解】∵△BDC繞點B逆時針旋轉至△BEA處,點E,A分別是點D,C旋轉后的對應點,∴∠CBD=∠ABE,BD=BE,∵∠ABC=∠CBD+∠ABD,∠EBD=∠ABE+∠ABD,∠ABC=80°,∴∠EBD=∠ABC=80°,∵BD=BE,∴∠BED=∠BDE=(180°-∠EBD)=(180°-80°)=50°,故選:A.【點睛】本題主要考查了旋轉的性質、等腰三角形的性質,以及三角形內角和定理.解題的關鍵是根據旋轉的性質得出旋轉前后的對應角、對應邊分別相等,利用等腰三角形的性質得出“等邊對等角”,再結合三角形內角和定理,即可得解.6、B【分析】根據反比例函數圖象上點的坐標特點:橫縱坐標之積=k,可以判斷出A的正誤;根據反比例函數的性質:k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內y隨x的增大而增大可判斷出B、C、D的正誤.【詳解】A、反比例函數,所過的點的橫縱坐標之積=?6,此結論正確,故此選項不符合題意;B、反比例函數,在每一象限內y隨x的增大而增大,此結論不正確,故此選項符合題意;C、反比例函數,圖象在第二、四象限內,此結論正確,故此選項不合題意;D、反比例函數,當x>1時圖象在第四象限,y隨x的增大而增大,故x>1時,?6<y<0;故選:B.【點睛】此題主要考查了反比例函數的性質,以及反比例函數圖象上點的坐標特點,關鍵是熟練掌握反比例函數的性質:(1)反比例函數y=(k≠0)的圖象是雙曲線;(2)當k>0,雙曲線的兩支分別位于第一、第三象限,在每一象限內y隨x的增大而減小;(3)當k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內y隨x的增大而增大.7、C【分析】先根據垂徑定理得到,再根據圓周角定理得∠BOD=2∠CAB=40°,然后利用鄰補角的定義計算∠AOD的度數.【詳解】∵CD⊥AB,∴,∴∠BOD=2∠CAB=2×20°=40°,∴∠AOD=180°-∠BOD=180°-40°=140°.故答案為C.【點睛】本題考查圓中的角度計算,熟練掌握垂徑定理和圓周角定理是關鍵.8、B【分析】根據CD∥AB∥MN,得到△ABE∽△CDE,△ABF∽△MNF,根據相似三角形的性質可知,,即可得到結論.【詳解】解:如圖,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴,即,,解得:AB=3.5m,故選:B.【點睛】本題考查的是相似三角形的應用,相似三角形的判定和性質,熟練掌握相似三角形的判定和性質是解題的關鍵.9、B【分析】連接BD,CD,由勾股定理求出BD的長,再利用,得出,從而求出DE的長,最后利用即可得出答案.【詳解】連接BD,CD∵為的直徑∵弦平分即解得故選:B.【點睛】本題主要考查圓周角定理的推論及相似三角形的判定及性質,掌握圓周角定理的推論及相似三角形的性質是解題的關鍵.10、B【分析】根據中心對稱圖形的概念:把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,進行判斷.【詳解】解:從左起第2、4、5個圖形是中心對稱圖形.故選:B.【點睛】本題考查了中心對稱的定義:把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形.11、D【分析】根據比例的性質,則ad=bc,逐個判斷可得答案.【詳解】解:由可得:2x=3yA.,此選項不符合題意B.,此選項不符合題意C.,則3x=2y,此選項不符合題意D.,則2x=3y,正確故選:D【點睛】本題考查比例的性質,解題關鍵在于掌握,則ad=bc.12、C【解析】根據二次函數解析式求得對稱軸是x=3,由拋物線的對稱性得到答案.【詳解】解:由二次函數得到對稱軸是直線,則拋物線與軸的兩個交點坐標關于直線對稱,∵其中一個交點的坐標為,則另一個交點的坐標為,故選C.【點睛】考查拋物線與x軸的交點坐標,解題關鍵是掌握拋物線的對稱性質.二、填空題(每題4分,共24分)13、3【分析】根據題意畫出圖形,利用等邊三角形的性質及銳角三角函數的定義直接計算即可.【詳解】如圖所示,連接OB、OC,過O作OG⊥BC于G.∵此多邊形是正六邊形,∴△OBC是等邊三角形,∴∠OBG=60°,∴邊心距OG=OB?sin∠OBG=6(cm).故答案為:.【點睛】本題考查了正多邊形與圓、銳角三角函數的定義及特殊角的三角函數值,熟知正六邊形的性質是解答本題的關鍵.14、2019【分析】所求的式子前三項分解因式,再把已知的式子整體代入計算即可.【詳解】解:∵,∴.故答案為:2019.【點睛】本題考查了代數式求值、分解因式和整體的數學思想,屬于常見題型,靈活應用整體的思想是解題關鍵.15、①②③④【分析】先利用待定系數法求得的值,<0可判斷①;對稱軸為直線,利用二次函數的性質可判斷②;方程即,解得,可判斷③;時,;當時,,且函數有最大值,則當時,,即可判斷④.【詳解】∵時,時,時,∴,解得:,∴,故①正確;

∵對稱軸為直線,∴當x>時,y的值隨x值的增大而減小,故②正確;方程即,解得,∴是方程的一個根,故③正確;當時,,

當時,,∵,∴函數有最大值,

∴當時,,故④正確.

故答案為:①②③④.【點睛】本題考查了待定系數法求二次函數的解析式,二次函數的性質,拋物線與x軸的交點,熟練掌握二次函數圖象的性質是解題的關鍵.16、【分析】先求出雙曲線的解析式,設=2,=2,分別求出和的值,從中找到規律表示出的值,據此可求得點的坐標.【詳解】解:∵,是等腰三角形,∴==4,∴的坐標是(-4,4),∴的坐標是(-2,2),∴雙曲線解析式為,設=2,則=2,∴的坐標是(-4-2,2),∴的坐標是(-4-,),∴(-4-)=-4,∴=(負值舍去),∴=,設=2,則=2,同理可求得=,∴=,……,依此類推=,∴==,∴=+++……+=4+++……+=∴的坐標是(,),故答案是:(,).【點睛】本題考查了反比例函數圖象上點的坐標特征:反比例函數(k為常數,k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.也考查了等腰直角三角形的性質.17、1【解析】分別作O1A⊥l,O2B⊥l,O3C⊥l,如圖,

∵半圓O1,半圓O2,…,半圓On與直線L相切,

∴O1A=r1,O2B=r2,O3C=r3,

∵∠AOO1=30°,

∴OO1=2O1A=2r1=2,

在Rt△OO2B中,OO2=2O2B,即2+1+r2=2r2,

∴r2=3,

在Rt△OO2C中,OO3=2O2C,即2+1+2×3++r3=2r3,

∴r3=9=32,

同理可得r4=27=33,

所以r2018=1.

故答案為1.點睛:找規律題需要記憶常見數列1,2,3,4……n1,3,5,7……2n-12,4,6,8……2n2,4,8,16,32……1,4,9,16,25……2,6,12,20……n(n+1)一般題目中的數列是利用常見數列變形而來,其中后一項比前一項多一個常數,是等差數列,列舉找規律.后一項是前一項的固定倍數,則是等比數列,列舉找規律.18、(0,0)【解析】根據y軸上的點的特點:橫坐標為0.可代入求得y=0,因此可得拋物線y=4x2-3x與y軸的交點坐標是(0,0).故答案為(0,0).三、解答題(共78分)19、(1)y=x2﹣4x+;(2)S=﹣(x﹣3)2+(1<x<1),當x=3時,S有最大值;(3)(0,﹣)【分析】(1)設出解析式,由待定系數法可得出結論;(2)點E在拋物線上,用x去表示y,結合三角形面積公式即可得出三角形OEB的面積S與x之間的函數關系式,再由E點在x軸下方,得出1<x<1,將三角形OEB的面積S與x之間的函數關系式配方,即可得出最值;(3)找出D點關于y軸對稱的對稱點D′,結合三角形內兩邊之和大于第三邊,即可確定當MD+MB最小時M點的坐標.【詳解】解:(1)設拋物線解析式為y=ax2+bx+c,則,解得:.故拋物線解析式為y=x2﹣4x+.(2)過點E作EF⊥x軸,垂足為點F,如圖1所示.E點坐標為(x,x2﹣4x+),F點的坐標為(x,0),∴EF=0﹣(x2﹣4x+)=﹣x2+4x﹣.∵點E(x,y)是拋物線上一動點,且在x軸下方,∴1<x<1.三角形OEB的面積S=OB?EF=×1×(﹣x2+4x﹣)=﹣(x﹣3)2+(1<x<1=.當x=3時,S有最大值.(3)作點D關于y軸的對稱點D′,連接BD′,如圖2所示.∵拋物線解析式為y=x2﹣4x+=(x﹣3)2﹣,∴D點的坐標為(3,﹣),∴D′點的坐標為(﹣3,﹣).由對稱的特性可知,MD=MD′,∴MB+MD=MB+MD′,當B、M、D′三點共線時,MB+MD′最小.設直線BD′的解析式為y=kx+b,則,解得:,∴直線BD′的解析式為y=x﹣.當x=0時,y=﹣,∴點M的坐標為(0,﹣).【點睛】本題考查了待定系數法求二次函數和一次函數解析式、軸對稱的性質、利用二次函數求最值等知識.解題的關鍵是:(1)能夠熟練運用待定系數法求解析式;(2)利用三角形面積公式找出三角形面積的解析式,再去配方求最值;(3)利用軸對稱的性質確定M點的位置.20、證明詳見解析.【解析】試題分析:根據等腰三角形的性質,由AB=AC,D是BC中點得到AD⊥BC,易得∠ADC=∠BEC=90°,再證明∠FAD=∠CBE,于是根據有兩組角對應相等的兩個三角形相似即可得到結論.試題解析:證明:∵AB=AC,D是BC中點,∴AD⊥BC,∴∠ADC=90°,∴∠FAE+∠AFE=90°,∵BE⊥AC,∴∠BEC=90°,∴∠CBE+∠BFD=90°,∵∠AFE=∠BFD,∴∠FAD=∠CBE,∴△AFE∽△BCE.考點:相似三角形的判定.21、(1)見解析;(2)【分析】⑴根據題意依據(AA)公理證明即可.⑵根據相似三角形性質對應邊成比例求解即可.【詳解】證明:(1),平分,又(2)又,,,【點睛】本題考查了相似三角形的判定和性質.22、(1)2;(2)a=5,c=1【分析】(1)分別把各特殊角的三角函數值代入,再根據二次根式混合運算的法則進行計算即可;(2)由直角三角形的性質可得c=2a,由勾股定理可求解.【詳解】(1)原式=4×()2+1﹣8×()2=3+1﹣6=﹣2;(2)∵∠C=90°,∠A=30°,∴c=2a.∵a2+b2=c2,∴,∴3a2=75,∴a=5(負數舍去),∴c=1.【點睛】本題考查了直角三角形的性質,勾股定理,特殊角的三角函數值,熟記各特殊角度的三角函數值是解答本題的關鍵.23、(1)詳見解析;(2);(1)的長分別為或1.【分析】(1)由比例中項知,據此可證得,再證明可得答案;(2)先證,結合,得,從而知,據此可得,由(1)得,據此知,求得;(1)分和兩種情況分別求解可得.【詳解】(1)證明:∵是和的比例中項∴∵∴∴∵∴∵∴∴∴(2)解:∵與互相垂直∴∵∴∴由(1)得∴∴∴∵,,∴∴由(1)得∴∴∴∵∴∴(1)∵,又,由(1)得∴當與以點、、為頂點所組成的三角形相似時1),如圖∴由(2)得:2),如圖過點作,垂足為點由(1)得∴∴又設,則,,又∴,解得∴綜上所述,的長分別為或1.【點睛】本題考查了相似三角形的判定定理,利用三角形相似以及相關的等量關系來求解MN和DE的長.24、(1)y=-2x+200;(2)100件或20件;(3)銷售單價定為65元時,該超市每天的利潤最大,最大利潤1750元【分析】(1)將點(40,120)、(60,80)代入一次函數表達式,即可求解;(2)由題意得(x-40)(-2x+200)=1000,解不等式即可得到結論;(3)由題意得w=(x-40)(-2x+200)=-2(x-70)2+1800,即可求解.【詳解】(1)設y與銷售單價x之間的函數關系式為:y=kx+b,

將點(40,120)、(60,80)代入一次函數表達式得:解得,所以關系式為y=-2x+200;(2)由題意得:(x-40)(-2x+200)=1000解得x1=50,x2=90;所以當x=50時,銷量為:100件;當x=90時,銷量為20件;(3)由題意可得利潤W=(x-40)(-2x+200)=-2(x-70)2+1800,∵-2<0,故當x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論