2023年山東省樂陵市第一中學數學九上期末調研模擬試題含解析_第1頁
2023年山東省樂陵市第一中學數學九上期末調研模擬試題含解析_第2頁
2023年山東省樂陵市第一中學數學九上期末調研模擬試題含解析_第3頁
2023年山東省樂陵市第一中學數學九上期末調研模擬試題含解析_第4頁
2023年山東省樂陵市第一中學數學九上期末調研模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年山東省樂陵市第一中學數學九上期末調研模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.如圖,△ABC中,∠ACB=90°,∠A=30°,將△ABC繞C點按逆時針方向旋轉角(0°<<90°)得到△DEC,設CD交AB于點F,連接AD,當旋轉角度數為________,△ADF是等腰三角形.A.20° B.40° C.10° D.20°或40°2.如圖,以原點O為圓心的圓交x軸于點A、B兩點,交y軸的正半軸于點C,D為第一象限內上的一點,若,則的度數是A.B.C.D.3.如圖,某同學用圓規畫一個半徑為的圓,測得此時,為了畫一個半徑更大的同心圓,固定端不動,將端向左移至處,此時測得,則的長為()A. B. C. D.4.若拋物線y=ax2+2ax+4(a<0)上有A(-,y1),B(-

,y2),C(

,y3)三點,則y1,y2,y3的大小關系為()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y3<y15.下列方程中,是關于x的一元二次方程的為()A. B. C. D.6.如圖,四邊形內接于,為延長線上一點,若,則的度數為()A. B. C. D.7.如圖,菱形ABCD中,∠B=70°,AB=3,以AD為直徑的⊙O交CD于點E,則弧DE的長為()A.π B.π C.π D.π8.下列對于二次根式的計算正確的是()A. B.2=2C.2=2 D.2=9.二次函數中與的部分對應值如下表所示,則下列結論錯誤的是()-1013-1353A. B.當時,的值隨值的增大而減小C.當時, D.3是方程的一個根10.已知:不在同一直線上的三點A,B,C求作:⊙O,使它經過點A,B,C作法:如圖,(1)連接AB,作線段AB的垂直平分線DE;(2)連接BC,作線段BC的垂直平分線FG,交DE于點O;(3)以O為圓心,OB長為半徑作⊙O.⊙O就是所求作的圓.根據以上作圖過程及所作圖形,下列結論中正確的是()A.連接AC,則點O是△ABC的內心 B.C.連接OA,OC,則OA,OC不是⊙的半徑 D.若連接AC,則點O在線段AC的垂直平分線上11.已知函數的圖象如圖所示,則一元二次方程根的存在情況是A.沒有實數根 B.有兩個相等的實數根C.有兩個不相等的實數根 D.無法確定12.如圖,在⊙O中,點A、B、C在圓上,∠AOB=100°,則∠C=()A.45° B.50° C.55° D.60°二、填空題(每題4分,共24分)13.如圖,正五邊形ABCDE內接于⊙O,若⊙O的半徑為10,則的長為____.14.已知,=________.15.如圖,在△ABC中,點D、E分別在△ABC的兩邊AB、AC上,且DE∥BC,如果,,,那么線段BC的長是______.16.某廠四月份生產零件50萬個,已知五、六月份平均每月的增長率是20%,則第二季度共生產零件_____萬個.17.不等式組的整數解的和是__________.18.已知p,q都是正整數,方程7x2﹣px+2009q=0的兩個根都是質數,則p+q=_____.三、解答題(共78分)19.(8分)如圖1,在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F.(1)證明:△APD≌△CPD;(2)求∠CPE的度數;(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當∠ABC=120°時,連接CE,試探究線段AP與線段CE的數量關系,并說明理由.20.(8分)某型號飛機的機翼形狀如圖所示,已知所在直線互相平行且都與所在直線垂直,.,,,.求的長度(參考數,,,,,)21.(8分)城市規劃期間,欲拆除一電線桿AB,已知距電線桿AB水平距離14m的D處有一大壩,背水坡CD的坡度i=2:1,壩高CF為2m,在壩頂C處測得桿頂A的仰角為30°,D、E之間是寬為2m的人行道.試問:在拆除電線桿AB時,為確保行人安全,是否需要將此人行道封上?請說明理由(在地面上,以點B為圓心,以AB長為半徑的圓形區域為危險區域.)(≈1.732,≈1.414)22.(10分)如圖,拋物線y=ax2+bx+4(a≠0)與軸交于點B(-3,0)和C(4,0)與軸交于點A.(1)a=,b=;(2)點M從點A出發以每秒1個單位長度的速度沿AB向B運動,同時,點N從點B出發以每秒1個單位長度的速度沿BC向C運動,當點M到達B點時,兩點停止運動.t為何值時,以B、M、N為頂點的三角形是等腰三角形?(3)點P是第一象限拋物線上的一點,若BP恰好平分∠ABC,請直接寫出此時點P的坐標.23.(10分)如圖,在中,是上的高..求證:.24.(10分)如圖1(注:與圖2完全相同),在直角坐標系中,拋物線經過點三點,,.(1)求拋物線的解析式和對稱軸;(2)是拋物線對稱軸上的一點,求滿足的值為最小的點坐標(請在圖1中探索);(3)在第四象限的拋物線上是否存在點,使四邊形是以為對角線且面積為的平行四邊形?若存在,請求出點坐標,若不存在請說明理由.(請在圖2中探索)25.(12分)計算:2cos60°+4sin60°?tan30°﹣cos45°26.如圖,在平面直角坐標系xOy中,直線y=x﹣2與反比例函數y=(k為常數,k≠0)的圖象在第一象限內交于點A,點A的橫坐標為1.(1)求反比例函數的表達式;(2)設直線y=x﹣2與y軸交于點C,過點A作AE⊥x軸于點E,連接OA,CE.求四邊形OCEA的面積.

參考答案一、選擇題(每題4分,共48分)1、D【分析】根據旋轉的性質可得AC=CD,根據等腰三角形的兩底角相等求出∠ADF=∠DAC,再表示出∠DAF,根據三角形的一個外角等于與它不相鄰的兩個內角的和表示出∠AFD,然后分①∠ADF=∠DAF,②∠ADF=∠AFD,③∠DAF=∠AFD三種情況討論求解.【詳解】∵△ABC繞C點逆時針方向旋轉得到△DEC,∴AC=CD,∴∠ADF=∠DAC=(180°-α),∴∠DAF=∠DAC-∠BAC=(180°-α)-30°,根據三角形的外角性質,∠AFD=∠BAC+∠DCA=30°+α,△ADF是等腰三角形,分三種情況討論,①∠ADF=∠DAF時,(180°-α)=(180°-α)-30°,無解,②∠ADF=∠AFD時,(180°-α)=30°+α,解得α=40°,③∠DAF=∠AFD時,(180°-α)-30°=30°+α,解得α=20°,綜上所述,旋轉角α度數為20°或40°.故選:D.【點睛】本題考查了旋轉的性質,等邊對等角的性質,三角形的一個外角等于與它不相鄰的兩個內角的和的性質,難點在于要分情況討論.2、D【分析】根據圓周角定理求出,根據互余求出∠COD的度數,再根據等腰三角形性質即可求出答案.【詳解】解:連接OD,,,,,.故選D.【點睛】本題考查了圓周角定理,等腰三角形性質等知識.熟練應用圓周角定理是解題的關鍵.3、A【分析】△ABO是等腰直角三角形,利用三角函數即可求得OA的長,過O'作O'D⊥AB于點D,在直角△AO'D中利用三角函數求得AD的長,則AB'=2AD,然后根據BB'=AB'-AB即可求解.【詳解】解:在等腰直角△OAB中,AB=1,則OA=cm,AO'=cm,∠AO'D=×120°=60°,

過O'作O'D⊥AB于點D.

則AD=AO'?sin60°=2×=.

則AB'=2AD=2,

故BB'=AB'-AB=2-1.

故選:A.【點睛】本題考查了三角函數的基本概念,主要是三角函數的概念及運算,關鍵把實際問題轉化為數學問題加以計算.4、C【分析】根據拋物線y=ax2+2ax+4(a<0)可知該拋物線開口向下,可以求得拋物線的對稱軸,又因為拋物線具有對稱性,從而可以解答本題.【詳解】解:∵拋物線y=ax2+2ax+4(a<0),∴對稱軸為:x=,∴當x<?1時,y隨x的增大而增大,當x>?1時,y隨x的增大而減小,∵A(?,y1),B(?,y2),C(,y3)在拋物線上,且?<?,?0.5<,∴y3<y1<y2,故選:C.【點睛】本題考查二次函數的性質,解題的關鍵是明確二次函數具有對稱性,在對稱軸的兩側它的增減性不一樣.5、B【解析】根據一元二次方程的定義,一元二次方程有三個特點:(1)只含有一個未知數;(1)未知數的最高次數是1;(3)是整式方程.要判斷一個方程是否為一元二次方程,先看它是否為整式方程,若是,再對它進行整理.如果能整理為ax1+bx+c=0(a≠0)的形式,則這個方程就為一元二次方程.【詳解】解:A.,是分式方程,B.,正確,C.,是二元二次方程,D.,是關于y的一元二次方程,故選B【點睛】此題主要考查了一元二次方程的定義,關鍵是掌握一元二次方程必須同時滿足三個條件:①整式方程,即等號兩邊都是整式;方程中如果有分母,那么分母中無未知數;②只含有一個未知數;③未知數的最高次數是1.6、D【分析】根據圓內接四邊形的對角互補,先求出∠ADC的度數,再求∠ADE的度數即可.【詳解】解:四邊形內接于-,.故選:.【點睛】本題考查的是內接四邊形的對角互補,也就是內接四邊形的外角等于和它不相鄰的內對角.7、A【分析】連接OE,由菱形的性質得出∠D=∠B=70°,AD=AB=3,得出OA=OD=1.5,由等腰三角形的性質和三角形內角和定理求出∠DOE=40°,再由弧長公式即可得出答案.【詳解】連接OE,如圖所示:∵四邊形ABCD是菱形,∴∠D=∠B=70°,AD=AB=3,∴OA=OD=1.5,∵OD=OE,∴∠OED=∠D=70°,∴∠DOE=180°﹣2×70°=40°,∴的長=.故選:A.【點睛】此題考查菱形的性質、弧長計算,根據菱形得到需要的邊長及角度即可代入公式計算弧長.8、C【解析】根據二次根式的加減法對A、B進行判斷;根據二次根式的除法法則對C進行判斷;根據二次根式的乘法法則對D進行判斷.【詳解】A、原式=2,所以A選項錯誤;B、原式=,所以B選項錯誤;C、原式=2,所以C選項正確;D、原式=6,所以D選項錯誤.故選C.【點睛】本題考查了二次根式的混合運算:先把各二次根式化簡為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當的解題途徑,往往能事半功倍.9、C【分析】根據表格中的數值計算出函數表達式,從而可判斷A選項,利用對稱軸公式可計算出對稱軸,從而判斷其增減性,再根據函數圖象及表格中y=3時對應的x,可判斷C選項,把對應參數值代入即可判斷D選項.【詳解】把(-1,-1),(0,3),(1,5)代入得,解得,∴,A.,故本選項正確;B.該函數對稱軸為直線,且,函數圖象開口向下,所以當時,y隨x的增大而減小,故本選項正確;C.由表格可知,當x=0或x=3時,y=3,且函數圖象開口向下,所以當y<3時,x<0或x>3,故本選項錯誤;D.方程為,把x=3代入得-9+6+3=0,所以本選項正確.故選:C.【點睛】本題考查了二次函數表達式求法,二次函數圖象與系數的關系,二次函數的性質等知識,“待定系數法”是求函數表達式的常用方法,需熟練掌握.10、D【分析】根據三角形的外心性質即可解題.【詳解】A:連接AC,根據題意可知,點O是△ABC的外心,故A錯誤;B:根據題意無法證明,故B錯誤;C:連接OA,OC,則OA,OC是⊙的半徑,故C錯誤D:若連接AC,則點O在線段AC的垂直平分線上,故D正確故答案為:D.【點睛】本題考查了三角形的確定即不在一條線上的三個點確定一個圓,這個圓是三角形的外接圓,o是三角形的外心.11、C【詳解】試題分析:一次函數的圖象有四種情況:①當,時,函數的圖象經過第一、二、三象限;②當,時,函數的圖象經過第一、三、四象限;③當,時,函數的圖象經過第一、二、四象限;④當,時,函數的圖象經過第二、三、四象限.由圖象可知,函數的圖象經過第二、三、四象限,所以,.根據一元二次方程根的判別式,方程根的判別式為,當時,,∴方程有兩個不相等的實數根.故選C.12、B【分析】利用同弧所對的圓周角是圓心角的一半,求得圓周角的度數即可;【詳解】解:∵,∴∠C=∠AOB,∵∠AOB=100°,∴∠C=50°;故選:B.【點睛】本題主要考查了圓周角定理,掌握圓周角定理是解題的關鍵.二、填空題(每題4分,共24分)13、2π【分析】利用正五邊形的性質得出中心角度數,進而利用弧長公式求出即可.【詳解】解:如圖所示:連接OA、OB.∵⊙O為正五邊形ABCDE的外接圓,⊙O的半徑為10,∴∠AOB==72°,∴的長為:.故答案為:2π.【點睛】本題主要考查正多邊形與圓、弧長公式等知識,得出圓心角度數是解題關鍵.14、【分析】先去分母,然后移項合并,即可得到答案.【詳解】解:∵,∴,∴,∴,∴;故答案為:.【點睛】本題考查了解二元一次方程,解題的關鍵是掌握解二元一次方程的方法.15、;【分析】根據DE∥BC可得,再由相似三角形性質列比例式即可求解.【詳解】解:,,,又∵,,,,解得:故答案為:.【點睛】本題主要考查了平行線分線段成比例定理的應用,找準對應線段是解題的關鍵.16、1【分析】由該廠四月份生產零件50萬個及五、六月份平均每月的增長率是20%,可得出該廠五月份生產零件50×(1+20%)萬個、六月份生產零件50×(1+20%)2萬個,將三個月份的生產量相加即可求出結論.【詳解】解:50+50×(1+20%)+50×(1+20%)2=1(萬個).故答案為:1.【點睛】本題考查了列代數式以及有理數的混合運算,根據各月份零件的生產量,求出第二季度的總產量是解題的關鍵.17、【分析】先求出不等式的解集,再求出不等式組的解集,即可得出答案.【詳解】解①得:x<1;解②得:x>?3;∴原不等式組的解集為?3<x<1;∴原不等式組的所有整數解為?2、?1、0∴整數解的和是:-2-1+0=-3.故答案為:-3.【點睛】此題考查解一元一次不等式組,解題關鍵在于掌握解不等式組.18、337【分析】利用一元二次方程根與系數的關系,得出有關p,q的式子,再利用兩個根都是質數,可分析得出結果.【詳解】解:x1+x2=,x1x2==287q=7×41×q,x1和x2都是質數,則只有x1和x2是7和41,而q=1,所以7+41=,p=336,所以p+q=337,故答案為:337.【點睛】此題考查了一元二次方程根與系數的關系以及質數的概念,題目比較典型.三、解答題(共78分)19、(1)證明見解析;(2)90°;(3)AP=CE.【分析】(1)利用正方形得到AD=CD,∠ADP=∠CDP=45,即可證明全等;(2)設,利用三角形內角和性質及外角性質得到,,再利用周角計算得出x值;(3)AP=CE.設,利用三角形內角和性質及外角性質得到,,求出,得到是等邊三角形,即可證得AP=CE.【詳解】解:(1)四邊形ABCD是正方形,∴AD=CD,∠ADP=∠CDP=45,在與中,,∴;(2)設,由(1)得,,因為PA=PE,所以所以;(3)AP=CE.設,由(1)得,,∵PA=PE且在菱形ABCD中,∴,∴,由(1)得PA=PC,∴PC=PE,∴是等邊三角形,∴PE=PC=CE,∴AP=CE.【點睛】此題考查全等三角形的判定,正方形的性質,菱形的性質,三角形的內角和及外角性質,(2)與(3)圖形有變化,解題思路不變,做題中注意總結解題的方法.20、【分析】在Rt△DEB和Rt△ACP中利用銳角三角函數來求出DE、AP的長,根據題意可知CE=BP,從而求出AB.【詳解】解:如圖,延長交過點平行于的直線于點,在中,在中,.則..答:的長度為.【點睛】本題考查的是利用銳角三角函數值求線段長.21、不必封上人行道【分析】過C點作CG⊥AB交AB于G.求需不需要將人行道封上實際上就是比較AB與BE的長短,已知BD,DF的長度,那么AB的長度也就求出來了,現在只需要知道BE的長度即可,有BF的長,ED的長,缺少的是DF的長,根據“背水坡CD的坡度i=1:2,壩高CF為2m”DF是很容易求出的,這樣有了CG的長,在△ACG中求出AG的長度,這樣就求出AB的長度,有了BE的長,就可以判斷出是不是需要封上人行道了.【詳解】過C點作CG⊥AB交AB于G.在Rt△CDF中,水坡CD的坡度i=2:1,即tan∠CDF=2,∵CF=2,∴DF=1.∴BF=BD+DF=12+1=13.∴CG=13,在Rt△ACG中,∵∠ACG=30°,∴AG=CG·tan30°=13×=7.5m∴AB=AG+BG=7.5+2=9.5m,BE=12m,AB<BE,∴不必封上人行道.【點睛】本題考查俯角、仰角的定義,要求學生能借助俯角、仰角構造直角三角形并結合圖形利用三角函數解直角三角形.22、(1),;(2);(3)【解析】(1)直接利用待定系數法求二次函數解析式得出即可;(2)分三種情況:①當BM=BN時,即5-t=t,②當BM=NM=5-t時,過點M作ME⊥OB,因為AO⊥BO,所以ME∥AO,可得:即可解答;③當BE=MN=t時,過點E作EF⊥BM于點F,所以BF=BM=(5-t),易證△BFE∽△BOA,所以即可解答;(3)設BP交y軸于點G,過點G作GH⊥AB于點H,因為BP恰好平分∠ABC,所以OG=GH,BH=BO=3,所以AH=2,AG=4-OG,在Rt△AHG中,由勾股定理得:OG=,設出點P坐標,易證△BGO∽△BPD,所以,即可解答.【詳解】解:解:(1)∵拋物線過點B(-3,0)和C(4,0),

∴,

解得:;(2)∵B(-3,0),y=ax2+bx+4,∴A(0,4),0A=4,OB=3,在Rt△ABO中,由勾股定理得:AB=5,t秒時,AM=t,BN=t,BM=AB-AM=5-t,①如圖:當BM=BN時,即5-t=t,解得:t=;,②如圖,當BM=NM=5-t時,過點M作ME⊥OB,因為BN=t,由三線合一得:BE=BN=t,又因為AO⊥BO,所以ME∥AO,所以,即,解得:t=;③如圖:當BE=MN=t時,過點E作EF⊥BM于點F,所以BF=BM=(5-t),易證△BFE∽△BOA,所以,即,解得:t=.(3)設BP交y軸于點G,過點G作GH⊥AB于點H,因為BP恰好平分∠ABC,所以OG=GH,BH=BO=3,所以AH=2,AG=4-OG,在Rt△AHG中,由勾股定理得:OG=,設P(m,-m2+m+4),因為GO∥PD,∴△BGO∽△BPD,∴,即,解得:m1=,m2=-3(點P在第一象限,所以不符合題意,舍去),m1=時,-m2+m+4=故點P的坐標為【點睛】本題考查用待定系數法求二次函數解析式,還考查了等腰三角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論