重慶涪陵區重點中學2024屆中考聯考數學試題含解析_第1頁
重慶涪陵區重點中學2024屆中考聯考數學試題含解析_第2頁
重慶涪陵區重點中學2024屆中考聯考數學試題含解析_第3頁
重慶涪陵區重點中學2024屆中考聯考數學試題含解析_第4頁
重慶涪陵區重點中學2024屆中考聯考數學試題含解析_第5頁
已閱讀5頁,還剩25頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

重慶涪陵區重點中學2024學年中考聯考數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,一次函數y=x﹣1的圖象與反比例函數的圖象在第一象限相交于點A,與x軸相交于點B,點C在y軸上,若AC=BC,則點C的坐標為()A.(0,1) B.(0,2) C. D.(0,3)2.如圖,AB∥CD,∠1=45°,∠3=80°,則∠2的度數為()A.30° B.35° C.40° D.45°3.如圖,在平面直角坐標系中,直線y=k1x+2(k1≠0)與x軸交于點A,與y軸交于點B,與反比例函數y=在第二象限內的圖象交于點C,連接OC,若S△OBC=1,tan∠BOC=,則k2的值是()A.3 B.﹣ C.﹣3 D.﹣64.如圖1,在矩形ABCD中,動點E從A出發,沿A→B→C方向運動,當點E到達點C時停止運動,過點E作EF⊥AE交CD于點F,設點E運動路程為x,CF=y,如圖2所表示的是y與x的函數關系的大致圖象,給出下列結論:①a=3;②當CF=時,點E的運動路程為或或,則下列判斷正確的是()A.①②都對 B.①②都錯 C.①對②錯 D.①錯②對5.下列運算正確的是()A.﹣(a﹣1)=﹣a﹣1 B.(2a3)2=4a6 C.(a﹣b)2=a2﹣b2 D.a3+a2=2a56.有m輛客車及n個人,若每輛客車乘40人,則還有10人不能上車,若每輛客車乘43人,則只有1人不能上車,有下列四個等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正確的是()A.①② B.②④ C.②③ D.③④7.如圖,⊙O的直徑AB=2,C是弧AB的中點,AE,BE分別平分∠BAC和∠ABC,以E為圓心,AE為半徑作扇形EAB,π取3,則陰影部分的面積為()A.﹣4 B.7﹣4 C.6﹣ D.8.下列四個圖形中,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.9.隨著生活水平的提高,小林家購置了私家車,這樣他乘坐私家車上學比乘坐公交車上學所需的時間少用了15分鐘,現已知小林家距學校8千米,乘私家車平均速度是乘公交車平均速度的2.5倍,若設乘公交車平均每小時走x千米,根據題意可列方程為()A. B. C. D.10.關于x的方程x2﹣3x+k=0的一個根是2,則常數k的值為()A.1 B.2 C.﹣1 D.﹣2二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在△ABC中,∠ACB=90°,AB=8,AB的垂直平分線MN交AC于D,連接DB,若tan∠CBD=,則BD=_____.12.如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點A在反比例函數y=的圖象上.若點B在反比例函數y=的圖象上,則k的值為_____.13.在△ABC中,點D在邊BC上,BD=2CD,,,那么=.14.若關于x、y的二元一次方程組的解滿足x+y>0,則m的取值范圍是____.15.如圖,D、E分別是△ABC的邊AB、BC上的點,DE∥AC,若S△BDE:S△CDE=1:3,則BE:BC的值為_________.16.如圖,將邊長為的正方形ABCD繞點A逆時針方向旋轉30°后得到正方形A′B′C′D′,則圖中陰影部分面積為_______平方單位.17.如圖,菱形OABC的頂點O是原點,頂點B在y軸上,菱形的兩條對角線的長分別是6和4,反比例函數的圖象經過點C,則k的值為.三、解答題(共7小題,滿分69分)18.(10分)如圖,有四張背面完全相同的紙牌A,B,C,D,其正面分別畫有四個不同的幾何圖形,將這四張紙牌背面朝上洗勻.從中隨機摸出一張,求摸出的牌面圖形是中心對稱圖形的概率;小明和小亮約定做一個游戲,其規則為:先由小明隨機摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機摸出一張,若摸出的兩張牌面圖形都是軸對稱圖形小明獲勝,否則小亮獲勝,這個游戲公平嗎?請用列表法(或樹狀圖)說明理由(紙牌用A,B,C,D表示).19.(5分)如圖,邊長為1的正方形ABCD的對角線AC、BD相交于點O.有直角∠MPN,使直角頂點P與點O重合,直角邊PM、PN分別與OA、OB重合,然后逆時針旋轉∠MPN,旋轉角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點,連接EF交OB于點G.(1)求四邊形OEBF的面積;(2)求證:OG?BD=EF2;(3)在旋轉過程中,當△BEF與△COF的面積之和最大時,求AE的長.20.(8分)如圖,在平面直角坐標系中,已知△AOB是等邊三角形,點A的坐標是(0,4),點B在一象限,點P(t,0)是x軸上的一個動點,連接AP,并把△AOP繞著點A按逆時針方向旋轉,使邊AO與AB重合,連接OD,PD,得△OPD。(1)當t=時,求DP的長(2)在點P運動過程中,依照條件所形成的△OPD面積為S①當t>0時,求S與t之間的函數關系式②當t≤0時,要使s=,請直接寫出所有符合條件的點P的坐標.21.(10分)在平面直角坐標系xOy中,對于P,Q兩點給出如下定義:若點P到兩坐標軸的距離之和等于點Q到兩坐標軸的距離之和,則稱P,Q兩點為同族點.下圖中的P,Q兩點即為同族點.(1)已知點A的坐標為(﹣3,1),①在點R(0,4),S(2,2),T(2,﹣3)中,為點A的同族點的是;②若點B在x軸上,且A,B兩點為同族點,則點B的坐標為;(2)直線l:y=x﹣3,與x軸交于點C,與y軸交于點D,①M為線段CD上一點,若在直線x=n上存在點N,使得M,N兩點為同族點,求n的取值范圍;②M為直線l上的一個動點,若以(m,0)為圓心,為半徑的圓上存在點N,使得M,N兩點為同族點,直接寫出m的取值范圍.22.(10分)在直角坐標系中,過原點O及點A(8,0),C(0,6)作矩形OABC、連結OB,點D為OB的中點,點E是線段AB上的動點,連結DE,作DF⊥DE,交OA于點F,連結EF.已知點E從A點出發,以每秒1個單位長度的速度在線段AB上移動,設移動時間為t秒.如圖1,當t=3時,求DF的長.如圖2,當點E在線段AB上移動的過程中,∠DEF的大小是否發生變化?如果變化,請說明理由;如果不變,請求出tan∠DEF的值.連結AD,當AD將△DEF分成的兩部分的面積之比為1:2時,求相應的t的值.23.(12分)如圖,足球場上守門員在處開出一高球,球從離地面1米的處飛出(在軸上),運動員乙在距點6米的處發現球在自己頭的正上方達到最高點,距地面約4米高,球落地后又一次彈起.據實驗測算,足球在草坪上彈起后的拋物線與原來的拋物線形狀相同,最大高度減少到原來最大高度的一半.求足球開始飛出到第一次落地時,該拋物線的表達式.足球第一次落地點距守門員多少米?(取)運動員乙要搶到第二個落點,他應再向前跑多少米?24.(14分)如圖1,在Rt△ABC中,∠C=90°,AC=BC=2,點D、E分別在邊AC、AB上,AD=DE=AB,連接DE.將△ADE繞點A逆時針方向旋轉,記旋轉角為θ.(1)問題發現①當θ=0°時,=;②當θ=180°時,=.(2)拓展探究試判斷:當0°≤θ<360°時,的大小有無變化?請僅就圖2的情形給出證明;(3)問題解決①在旋轉過程中,BE的最大值為;②當△ADE旋轉至B、D、E三點共線時,線段CD的長為.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解題分析】

根據方程組求出點A坐標,設C(0,m),根據AC=BC,列出方程即可解決問題.【題目詳解】由,解得或,

∴A(2,1),B(1,0),

設C(0,m),

∵BC=AC,

∴AC2=BC2,

即4+(m-1)2=1+m2,

∴m=2,

故答案為(0,2).【題目點撥】本題考查了反比例函數與一次函數的交點坐標問題、勾股定理、方程組等知識,解題的關鍵是會利用方程組確定兩個函數的交點坐標,學會用方程的思想思考問題.2、B【解題分析】分析:根據平行線的性質和三角形的外角性質解答即可.詳解:如圖,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故選B.點睛:此題考查平行線的性質,關鍵是根據平行線的性質和三角形的外角性質解答.3、C【解題分析】

如圖,作CH⊥y軸于H.通過解直角三角形求出點C坐標即可解決問題.【題目詳解】解:如圖,作CH⊥y軸于H.由題意B(0,2),∵∴CH=1,∵tan∠BOC=∴OH=3,∴C(﹣1,3),把點C(﹣1,3)代入,得到k2=﹣3,故選C.【題目點撥】本題考查反比例函數于一次函數的交點問題,銳角三角函數等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考常考題型.4、A【解題分析】

由已知,AB=a,AB+BC=5,當E在BC上時,如圖,可得△ABE∽△ECF,繼而根據相似三角形的性質可得y=﹣,根據二次函數的性質可得﹣,由此可得a=3,繼而可得y=﹣,把y=代入解方程可求得x1=,x2=,由此可求得當E在AB上時,y=時,x=,據此即可作出判斷.【題目詳解】解:由已知,AB=a,AB+BC=5,當E在BC上時,如圖,∵E作EF⊥AE,∴△ABE∽△ECF,∴,∴,∴y=﹣,∴當x=時,﹣,解得a1=3,a2=(舍去),∴y=﹣,當y=時,=﹣,解得x1=,x2=,當E在AB上時,y=時,x=3﹣=,故①②正確,故選A.【題目點撥】本題考查了二次函數的應用,相似三角形的判定與性質,綜合性較強,弄清題意,正確畫出符合條件的圖形,熟練運用二次函數的性質以及相似三角形的判定與性質是解題的關鍵.5、B【解題分析】

根據去括號法則,積的乘方的性質,完全平方公式,合并同類項法則,對各選項分析判斷后利用排除法求解.【題目詳解】解:A、因為﹣(a﹣1)=﹣a+1,故本選項錯誤;B、(﹣2a3)2=4a6,正確;C、因為(a﹣b)2=a2﹣2ab+b2,故本選項錯誤;D、因為a3與a2不是同類項,而且是加法,不能運算,故本選項錯誤.故選B.【題目點撥】本題考查了合并同類項,積的乘方,完全平方公式,理清指數的變化是解題的關鍵.6、D【解題分析】試題分析:首先要理解清楚題意,知道總的客車數量及總的人數不變,然后采用排除法進行分析從而得到正確答案.解:根據總人數列方程,應是40m+10=43m+1,①錯誤,④正確;根據客車數列方程,應該為,②錯誤,③正確;所以正確的是③④.故選D.考點:由實際問題抽象出一元一次方程.7、A【解題分析】∵O的直徑AB=2,∴∠C=90°,∵C是弧AB的中點,∴,∴AC=BC,∴∠CAB=∠CBA=45°,∵AE,BE分別平分∠BAC和∠ABC,∴∠EAB=∠EBA=22.5°,∴∠AEB=180°?(∠BAC+∠CBA)=135°,連接EO,∵∠EAB=∠EBA,∴EA=EB,∵OA=OB,∴EO⊥AB,∴EO為Rt△ABC內切圓半徑,∴S△ABC=(AB+AC+BC)?EO=AC?BC,∴EO=?1,∴AE2=AO2+EO2=12+(?1)2=4?2,∴扇形EAB的面積==,△ABE的面積=AB?EO=?1,∴弓形AB的面積=扇形EAB的面積?△ABE的面積=,∴陰影部分的面積=O的面積?弓形AB的面積=?()=?4,故選:A.8、D【解題分析】

根據軸對稱圖形與中心對稱圖形的概念判斷即可.【題目詳解】A、是軸對稱圖形,不是中心對稱圖形;B、是軸對稱圖形,不是中心對稱圖形;C、是軸對稱圖形,不是中心對稱圖形;D、不是軸對稱圖形,是中心對稱圖形.故選D.【題目點撥】本題考查的是中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.9、D【解題分析】分析:根據乘私家車平均速度是乘公交車平均速度的2.5倍,乘坐私家車上學比乘坐公交車上學所需的時間少用了15分鐘,利用時間得出等式方程即可.詳解:設乘公交車平均每小時走x千米,根據題意可列方程為:.故選D.點睛:此題主要考查了由實際問題抽象出分式方程,解題關鍵是正確找出題目中的相等關系,用代數式表示出相等關系中的各個部分,列出方程即可.10、B【解題分析】

根據一元二次方程的解的定義,把x=2代入得4-6+k=0,然后解關于k的方程即可.【題目詳解】把x=2代入得,4-6+k=0,解得k=2.故答案為:B.【題目點撥】本題主要考查了一元二次方程的解,掌握一元二次方程的定義,把已知代入方程,列出關于k的新方程,通過解新方程來求k的值是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、2.【解題分析】

由tan∠CBD==設CD=3a、BC=4a,據此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案.【題目詳解】解:在Rt△BCD中,∵tan∠CBD==,

∴設CD=3a、BC=4a,

則BD=AD=5a,

∴AC=AD+CD=5a+3a=8a,

在Rt△ABC中,由勾股定理可得(8a)2+(4a)2=82,

解得:a=或a=-(舍),

則BD=5a=2,

故答案為2.【題目點撥】本題考查線段垂直平分線上的點到線段兩端點的距離相等的性質,勾股定理的應用,解題關鍵是熟記性質與定理并準確識圖.12、﹣2【解題分析】

要求函數的解析式只要求出B點的坐標就可以,過點A,B作AC⊥x軸,BD⊥x軸,分別于C,D.根據條件得到△ACO∽△ODB,得到:=1,然后用待定系數法即可.【題目詳解】過點A,B作AC⊥x軸,BD⊥x軸,分別于C,D.設點A的坐標是(m,n),則AC=n,OC=m.∵∠AOB=90°,∴∠AOC+∠BOD=90°.∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC.∵∠BDO=∠ACO=90°,∴△BDO∽△OCA.∴,∵OB=1OA,∴BD=1m,OD=1n.因為點A在反比例函數y=的圖象上,∴mn=1.∵點B在反比例函數y=的圖象上,∴B點的坐標是(-1n,1m).∴k=-1n?1m=-4mn=-2.故答案為-2.【題目點撥】本題考查了反比例函數圖象上點的坐標特征,相似三角形的判定和性質,利用相似三角形的性質求得點B的坐標(用含n的式子表示)是解題的關鍵.13、【解題分析】

首先利用平行四邊形法則,求得的值,再由BD=2CD,求得的值,即可求得的值.【題目詳解】∵,,∴=-=-,∵BD=2CD,∴==,∴=+==.故答案為.14、m>-1【解題分析】

首先解關于x和y的方程組,利用m表示出x+y,代入x+y>0即可得到關于m的不等式,求得m的范圍.【題目詳解】解:,①+②得1x+1y=1m+4,則x+y=m+1,根據題意得m+1>0,解得m>﹣1.故答案是:m>﹣1.【題目點撥】本題考查的是解二元一次方程組和解一元一次不等式,解答此題的關鍵是把m當作已知數表示出x+y的值,再得到關于m的不等式.15、1:4【解題分析】

由S△BDE:S△CDE=1:3,得到

,于是得到

.【題目詳解】解:兩個三角形同高,底邊之比等于面積比.故答案為【題目點撥】本題考查了三角形的面積,比例的性質等知識,知道等高不同底的三角形的面積的比等于底的比是解題的關鍵.16、6﹣2【解題分析】

由旋轉角∠BAB′=30°,可知∠DAB′=90°﹣30°=60°;設B′C′和CD的交點是O,連接OA,構造全等三角形,用S陰影部分=S正方形﹣S四邊形AB′OD,計算面積即可.【題目詳解】解:設B′C′和CD的交點是O,連接OA,∵AD=AB′,AO=AO,∠D=∠B′=90°,∴Rt△ADO≌Rt△AB′O,∴∠OAD=∠OAB′=30°,∴OD=OB′=,S四邊形AB′OD=2S△AOD=2××=2,∴S陰影部分=S正方形﹣S四邊形AB′OD=6﹣2.【題目點撥】此題的重點是能夠計算出四邊形的面積.注意發現全等三角形.17、-6【解題分析】

分析:∵菱形的兩條對角線的長分別是6和4,∴A(﹣3,2).∵點A在反比例函數的圖象上,∴,解得k=-6.【題目詳解】請在此輸入詳解!三、解答題(共7小題,滿分69分)18、(1).(2)公平.【解題分析】

試題分析:(1)首先根據題意結合概率公式可得答案;(2)首先根據(1)求得摸出兩張牌面圖形都是軸對稱圖形的有16種情況,若摸出兩張牌面圖形都是中心對稱圖形的有12種情況,繼而求得小明贏與小亮贏的概率,比較概率的大小,即可知這個游戲是否公平.試題解析:(1)共有4張牌,正面是中心對稱圖形的情況有3種,所以摸到正面是中心對稱圖形的紙牌的概率是;(2)列表得:

A

B

C

D

A

(A,B)

(A,C)

(A,D)

B

(B,A)

(B,C)

(B,D)

C

(C,A)

(C,B)

(C,D)

D

(D,A)

(D,B)

(D,C)

共產生12種結果,每種結果出現的可能性相同,其中兩張牌都是軸對稱圖形的有6種,∴P(兩張都是軸對稱圖形)=,因此這個游戲公平.考點:游戲公平性;軸對稱圖形;中心對稱圖形;概率公式;列表法與樹狀圖法.19、(1);(2)詳見解析;(3)AE=.【解題分析】

(1)由四邊形ABCD是正方形,直角∠MPN,易證得△BOE≌△COF(ASA),則可證得S四邊形OEBF=S△BOC=S正方形ABCD;(2)易證得△OEG∽△OBE,然后由相似三角形的對應邊成比例,證得OG?OB=OE2,再利用OB與BD的關系,OE與EF的關系,即可證得結論;(3)首先設AE=x,則BE=CF=1﹣x,BF=x,繼而表示出△BEF與△COF的面積之和,然后利用二次函數的最值問題,求得AE的長.【題目詳解】(1)∵四邊形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°,∵∠EOF=90°,∴∠BOF+∠COE=90°,∴∠BOE=∠COF,在△BOE和△COF中,∴△BOE≌△COF(ASA),∴S四邊形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD(2)證明:∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG?OB=OE2,∵∴OG?BD=EF2;(3)如圖,過點O作OH⊥BC,∵BC=1,∴設AE=x,則BE=CF=1﹣x,BF=x,∴S△BEF+S△COF=BE?BF+CF?OH∵∴當時,S△BEF+S△COF最大;即在旋轉過程中,當△BEF與△COF的面積之和最大時,【題目點撥】本題屬于四邊形的綜合題,主要考查了正方形的性質,旋轉的性質、全等三角形的判定與性質、相似三角形的判定與性質、勾股定理以及二次函數的最值問題.注意掌握轉化思想的應用是解此題的關鍵.20、(1)DP=;(2)①;②.【解題分析】

(1)先判斷出△ADP是等邊三角形,進而得出DP=AP,即可得出結論;

(2)①先求出GH=2,進而求出DG,再得出DH,即可得出結論;

②分兩種情況,利用三角形的面積建立方程求解即可得出結論.【題目詳解】解:(1)∵A(0,4),

∴OA=4,

∵P(t,0),

∴OP=t,

∵△ABD是由△AOP旋轉得到,

∴△ABD≌△AOP,

∴AP=AD,∠DAB=∠PAO,

∴∠DAP=∠BAO=60°,

∴△ADP是等邊三角形,

∴DP=AP,

∵,

∴,

∴;(2)①當t>0時,如圖1,BD=OP=t,

過點B,D分別作x軸的垂線,垂足于F,H,過點B作x軸的平行線,分別交y軸于點E,交DH于點G,

∵△OAB為等邊三角形,BE⊥y軸,

∴∠ABP=30°,AP=OP=2,

∵∠ABD=90°,

∴∠DBG=60°,

∴DG=BD?sin60°=,

∵GH=OE=2,

∴,

∴;②當t≤0時,分兩種情況:

∵點D在x軸上時,如圖2在Rt△ABD中,,

(1)當時,如圖3,BD=OP=-t,,∴,

∴,

∴或,

∴或,

(2)當時,如圖4,BD=OP=-t,,

∴,

∴∴或(舍)∴.【題目點撥】此題是幾何變換綜合題,主要考查了全等三角形的判定和性質,旋轉的性質,三角形的面積公式以及解直角三角形,正確作出輔助線是解決本題的關鍵.21、(1)①R,S;②(,0)或(4,0);(2)①;②m≤或m≥1.【解題分析】

(1)∵點A的坐標為(?2,1),∴2+1=4,點R(0,4),S(2,2),T(2,?2)中,0+4=4,2+2=4,2+2=5,∴點A的同族點的是R,S;故答案為R,S;②∵點B在x軸上,∴點B的縱坐標為0,設B(x,0),則|x|=4,∴x=±4,∴B(?4,0)或(4,0);故答案為(?4,0)或(4,0);(2)①由題意,直線與x軸交于C(2,0),與y軸交于D(0,).點M在線段CD上,設其坐標為(x,y),則有:,,且.點M到x軸的距離為,點M到y軸的距離為,則.∴點M的同族點N滿足橫縱坐標的絕對值之和為2.即點N在右圖中所示的正方形CDEF上.∵點E的坐標為(,0),點N在直線上,∴.②如圖,設P(m,0)為圓心,為半徑的圓與直線y=x?2相切,∴PC=2,∴OP=1,觀察圖形可知,當m≥1時,若以(m,0)為圓心,為半徑的圓上存在點N,使得M,N兩點為同族點,再根據對稱性可知,m≤也滿足條件,∴滿足條件的m的范圍:m≤或m≥122、(1)3;(2)∠DEF的大小不變,tan∠DEF=;(3)或.【解題分析】

(1)當t=3時,點E為AB的中點,∵A(8,0),C(0,6),∴OA=8,OC=6,∵點D為OB的中點,∴DE∥OA,DE=OA=4,∵四邊形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四邊形DFAE是矩形,∴DF=AE=3;(2)∠DEF的大小不變;理由如下:作DM⊥OA于M,DN⊥AB于N,如圖2所示:∵四邊形OABC是矩形,∴OA⊥AB,∴四邊形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴,,∵點D為OB的中點,∴M、N分別是OA、AB的中點,∴DM=AB=3,DN=OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴,∵∠EDF=90°,∴tan∠DEF=;(3)作DM⊥OA于M,DN⊥AB于N,若AD將△DEF的面積分成1:2的兩部分,設AD交EF于點G,則點G為EF的三等分點;①當點E到達中點之前時,如圖3所示,NE=3﹣t,由△DMF∽△DNE得:MF=(3﹣t),∴AF=4+MF=﹣t+,∵點G為EF的三等分點,∴G(,),設直線AD的解析式為y=kx+b,把A(8,0),D(4,3)代入得:,解得:,∴直線AD的解析式為y=﹣x+6,把G(,)代入得:t=;②當點E越過中點之后,如圖4所示,NE=t﹣3,由△DMF∽△DNE得:MF=(t﹣3),∴AF=4﹣MF=﹣t+,∵點G為EF的三等分點,∴G(,),代入直線AD的解析式y=﹣x+6得:t=;綜上所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論