2024屆江蘇省南京溧水區中考數學全真模擬試卷含解析_第1頁
2024屆江蘇省南京溧水區中考數學全真模擬試卷含解析_第2頁
2024屆江蘇省南京溧水區中考數學全真模擬試卷含解析_第3頁
2024屆江蘇省南京溧水區中考數學全真模擬試卷含解析_第4頁
2024屆江蘇省南京溧水區中考數學全真模擬試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024學年江蘇省南京溧水區中考數學全真模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(共10小題,每小題3分,共30分)1.菱形ABCD中,對角線AC、BD相交于點O,H為AD邊中點,菱形ABCD的周長為28,則OH的長等于()A.3.5 B.4 C.7 D.142.下列計算正確的是()A.x2x3=x6 B.(m+3)2=m2+9C.a10÷a5=a5 D.(xy2)3=xy63.如圖,在正方形ABCD中,AB=,P為對角線AC上的動點,PQ⊥AC交折線A﹣D﹣C于點Q,設AP=x,△APQ的面積為y,則y與x的函數圖象正確的是()A. B.C. D.4.如圖1,等邊△ABC的邊長為3,分別以頂點B、A、C為圓心,BA長為半徑作弧AC、弧CB、弧BA,我們把這三條弧所組成的圖形稱作萊洛三角形,顯然萊洛三角形仍然是軸對稱圖形.設點I為對稱軸的交點,如圖2,將這個圖形的頂點A與等邊△DEF的頂點D重合,且AB⊥DE,DE=2π,將它沿等邊△DEF的邊作無滑動的滾動,當它第一次回到起始位置時,這個圖形在運動中掃過區域面積是()A.18π B.27π C.π D.45π5.將一把直尺與一塊三角板如圖所示放置,若則∠2的度數為()A.50° B.110° C.130° D.150°6.半徑為的正六邊形的邊心距和面積分別是()A., B.,C., D.,7.如圖,平行四邊形ABCD的頂點A、B、D在⊙O上,頂點C在⊙O直徑BE上,連結AE,若∠E=36°,則∠ADC的度數是()A.44° B.53° C.72° D.54°8.某圓錐的主視圖是一個邊長為3cm的等邊三角形,那么這個圓錐的側面積是()A.4.5πcm2 B.3cm2 C.4πcm2 D.3πcm29.如圖,點A、B、C、D在⊙O上,∠AOC=120°,點B是弧AC的中點,則∠D的度數是()A.60° B.35° C.30.5° D.30°10.下列命題中錯誤的有()個(1)等腰三角形的兩個底角相等(2)對角線相等且互相垂直的四邊形是正方形(3)對角線相等的四邊形為矩形(4)圓的切線垂直于半徑(5)平分弦的直徑垂直于弦A.1B.2C.3D.4二、填空題(本大題共6個小題,每小題3分,共18分)11.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,點D是以點A為圓心4為半徑的圓上一點,連接BD,點M為BD中點,線段CM長度的最大值為_____.12.已知,是關于x的一元二次方程x2+(2m+3)x+m2=0的兩個不相等的實數根,且滿足=﹣1,則m的值是____.13.已知邊長為5的菱形中,對角線長為6,點在對角線上且,則的長為__________.14.如圖,已知AE∥BD,∠1=130°,∠2=28°,則∠C的度數為____.15.已知點A(x1,y1),B(x2,y2)在直線y=kx+b上,且直線經過第一、三、四象限,當x1<x2時,y1與y2的大小關系為______________.16.雙曲線、在第一象限的圖像如圖,過y2上的任意一點A,作x軸的平行線交y1于B,交y軸于C,過A作x軸的垂線交y1于D,交x軸于E,連結BD、CE,則=.三、解答題(共8題,共72分)17.(8分)隨著“互聯網+”時代的到來,一種新型打車方式受到大眾歡迎,該打車方式的總費用由里程費和耗時費組成,其中里程費按x元/公里計算,耗時費按y元/分鐘計算(總費用不足9元按9元計價).小明、小剛兩人用該打車方式出行,按上述計價規則,其打車總費用、行駛里程數與打車時間如表:時間(分鐘)里程數(公里)車費(元)小明8812小剛121016(1)求x,y的值;(2)如果小華也用該打車方式,打車行駛了11公里,用了14分鐘,那么小華的打車總費用為多少?18.(8分)如圖,已知拋物線經過,兩點,頂點為.(1)求拋物線的解析式;(2)將繞點順時針旋轉后,點落在點的位置,將拋物線沿軸平移后經過點,求平移后所得圖象的函數關系式;(3)設(2)中平移后,所得拋物線與軸的交點為,頂點為,若點在平移后的拋物線上,且滿足的面積是面積的2倍,求點的坐標.19.(8分)如圖,在平面直角坐標系中,△AOB的三個頂點坐標分別為A(1,0),O(0,0),B(2,2).以點O為旋轉中心,將△AOB逆時針旋轉90°,得到△A1OB1.畫出△A1OB1;直接寫出點A1和點B1的坐標;求線段OB1的長度.20.(8分)小明參加某個智力競答節目,答對最后兩道單選題就順利通關.第一道單選題有3個選項,第二道單選題有4個選項,這兩道題小明都不會,不過小明還有一個“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個錯誤選項).如果小明第一題不使用“求助”,那么小明答對第一道題的概率是.如果小明將“求助”留在第二題使用,請用樹狀圖或者列表來分析小明順利通關的概率.從概率的角度分析,你建議小明在第幾題使用“求助”.(直接寫出答案)21.(8分)直角三角形ABC中,,D是斜邊BC上一點,且,過點C作,交AD的延長線于點E,交AB延長線于點F.求證:;若,,過點B作于點G,連接依題意補全圖形,并求四邊形ABGD的面積.22.(10分)臺州市某水產養殖戶進行小龍蝦養殖.已知每千克小龍蝦養殖成本為6元,在整個銷售旺季的80天里,銷售單價p(元/千克)與時間第t(天)之間的函數關系為:p=t+16,日銷售量y(千克)與時間第t(天)之間的函數關系如圖所示:(1)求日銷售量y與時間t的函數關系式?(2)哪一天的日銷售利潤最大?最大利潤是多少?(3)該養殖戶有多少天日銷售利潤不低于2400元?23.(12分)閱讀材料,解答問題.材料:“小聰設計的一個電子游戲是:一電子跳蚤從這P1(﹣3,9)開始,按點的橫坐標依次增加1的規律,在拋物線y=x2上向右跳動,得到點P2、P3、P4、P5…(如圖1所示).過P1、P2、P3分別作P1H1、P2H2、P3H3垂直于x軸,垂足為H1、H2、H3,則S△P1P2P3=S梯形P1H1H3P3﹣S梯形P1H1H2P2﹣S梯形P2H2H3P3=(9+1)×2﹣(9+4)×1﹣(4+1)×1,即△P1P2P3的面積為1.”問題:(1)求四邊形P1P2P3P4和P2P3P4P5的面積(要求:寫出其中一個四邊形面積的求解過程,另一個直接寫出答案);(2)猜想四邊形Pn﹣1PnPn+1Pn+2的面積,并說明理由(利用圖2);(3)若將拋物線y=x2改為拋物線y=x2+bx+c,其它條件不變,猜想四邊形Pn﹣1PnPn+1Pn+2的面積(直接寫出答案).24.如圖,輪船從點A處出發,先航行至位于點A的南偏西15°且點A相距100km的點B處,再航行至位于點A的南偏東75°且與點B相距200km的點C處.(1)求點C與點A的距離(精確到1km);(2)確定點C相對于點A的方向.(參考數據:2≈1.414

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解題分析】

根據菱形的四條邊都相等求出AB,菱形的對角線互相平分可得OB=OD,然后判斷出OH是△ABD的中位線,再根據三角形的中位線平行于第三邊并且等于第三邊的一半可得OHAB.【題目詳解】∵菱形ABCD的周長為28,∴AB=28÷4=7,OB=OD.∵H為AD邊中點,∴OH是△ABD的中位線,∴OHAB7=3.1.故選A.【題目點撥】本題考查了菱形的對角線互相平分的性質,三角形的中位線平行于第三邊并且等于第三邊的一半,熟記性質與定理是解題的關鍵.2、C【解題分析】

根據乘方的運算法則、完全平方公式、同底數冪的除法和積的乘方進行計算即可得到答案.【題目詳解】x2?x3=x5,故選項A不合題意;(m+3)2=m2+6m+9,故選項B不合題意;a10÷a5=a5,故選項C符合題意;(xy2)3=x3y6,故選項D不合題意.故選:C.【題目點撥】本題考查乘方的運算法則、完全平方公式、同底數冪的除法和積的乘方解題的關鍵是掌握乘方的運算法則、完全平方公式、同底數冪的除法和積的乘方的運算.3、B【解題分析】∵在正方形ABCD中,AB=,∴AC=4,AD=DC=,∠DAP=∠DCA=45o,當點Q在AD上時,PA=PQ,∴DP=AP=x,∴S=;當點Q在DC上時,PC=PQCP=4-x,∴S=;所以該函數圖象前半部分是拋物線開口向上,后半部分也為拋物線開口向下,故選B.【題目點撥】本題考查動點問題的函數圖象,有一定難度,解題關鍵是注意點Q在AP、DC上這兩種情況.4、B【解題分析】

先判斷出萊洛三角形等邊△DEF繞一周掃過的面積如圖所示,利用矩形的面積和扇形的面積之和即可.【題目詳解】如圖1中,∵等邊△DEF的邊長為2π,等邊△ABC的邊長為3,∴S矩形AGHF=2π×3=6π,由題意知,AB⊥DE,AG⊥AF,

∴∠BAG=120°,∴S扇形BAG==3π,∴圖形在運動過程中所掃過的區域的面積為3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;故選B.【題目點撥】本題考查軌跡,弧長公式,萊洛三角形的周長,矩形,扇形面積公式,解題的關鍵是判斷出萊洛三角形繞等邊△DEF掃過的圖形.5、C【解題分析】

如圖,根據長方形的性質得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【題目詳解】∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故選C.【題目點撥】本題考查了平行線的性質,三角形外角的性質等,準確識圖是解題的關鍵.6、A【解題分析】

首先根據題意畫出圖形,易得△OBC是等邊三角形,繼而可得正六邊形的邊長為R,然后利用解直角三角形求得邊心距,又由S正六邊形=求得正六邊形的面積.【題目詳解】解:如圖,O為正六邊形外接圓的圓心,連接OB,OC,過點O作OH⊥BC于H,∵六邊形ABCDEF是正六邊形,半徑為,∴∠BOC=,∵OB=OC=R,∴△OBC是等邊三角形,∴BC=OB=OC=R,∵OH⊥BC,∴在中,,即,∴,即邊心距為;∵,∴S正六邊形=,故選:A.【題目點撥】本題考查了正多邊形和圓的知識;求得正六邊形的中心角為60°,得到等邊三角形是正確解答本題的關鍵.7、D【解題分析】

根據直徑所對的圓周角為直角可得∠BAE=90°,再根據直角三角形的性質和平行四邊形的性質可得解.【題目詳解】根據直徑所對的圓周角為直角可得∠BAE=90°,根據∠E=36°可得∠B=54°,根據平行四邊形的性質可得∠ADC=∠B=54°.故選D【題目點撥】本題考查了平行四邊形的性質、圓的基本性質.8、A【解題分析】

根據已知得出圓錐的底面半徑及母線長,那么利用圓錐的側面積=底面周長×母線長÷2求出即可.【題目詳解】∵圓錐的軸截面是一個邊長為3cm的等邊三角形,∴底面半徑=1.5cm,底面周長=3πcm,∴圓錐的側面積=12×3π×3=4.5πcm2故選A.【題目點撥】此題主要考查了圓錐的有關計算,關鍵是利用圓錐的側面積=底面周長×母線長÷2得出.9、D【解題分析】

根據圓心角、弧、弦的關系定理得到∠AOB=∠AOC,再根據圓周角定理即可解答.【題目詳解】連接OB,∵點B是弧的中點,∴∠AOB=∠AOC=60°,由圓周角定理得,∠D=∠AOB=30°,故選D.【題目點撥】此題考查了圓心角、弧、弦的關系定理,解題關鍵在于利用好圓周角定理.10、D【解題分析】分析:根據等腰三角形的性質、正方形的判定定理、矩形的判定定理、切線的性質、垂徑定理判斷即可.詳解:等腰三角形的兩個底角相等,(1)正確;對角線相等、互相平分且互相垂直的四邊形是正方形,(2)錯誤;對角線相等的平行四邊形為矩形,(3)錯誤;圓的切線垂直于過切點的半徑,(4)錯誤;平分弦(不是直徑)的直徑垂直于弦,(5)錯誤.故選D.點睛:本題考查的是命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關鍵是要熟悉課本中的性質定理.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解題分析】

作AB的中點E,連接EM、CE,根據直角三角形斜邊上的中線等于斜邊的一半以及三角形的中位線定理求得CE和EM的長,然后在△CEM中根據三邊關系即可求解.【題目詳解】作AB的中點E,連接EM、CE,在直角△ABC中,AB===10,∵E是直角△ABC斜邊AB上的中點,∴CE=AB=5,∵M是BD的中點,E是AB的中點,∴ME=AD=2,∴在△CEM中,5-2≤CM≤5+2,即3≤CM≤1,∴最大值為1,故答案為1.【題目點撥】本題考查了點與圓的位置關系、三角形的中位線定理的知識,要結合勾股定理、直角三角形斜邊上的中線等于斜邊的一半解答.12、3.【解題分析】

可以先由韋達定理得出兩個關于、的式子,題目中的式子變形即可得出相應的與韋達定理相關的式子,即可求解.【題目詳解】得+=-2m-3,=m2,又因為,所以m2-2m-3=0,得m=3或m=-1,因為一元二次方程的兩個不相等的實數根,所以△>0,得(2m+3)2-4×m2=12m+9>0,所以m>,所以m=-1舍去,綜上m=3.【題目點撥】本題考查了根與系數的關系,將根與系數的關系與代數式相結合解題是解決本題的關鍵.13、3或1【解題分析】

菱形ABCD中,邊長為1,對角線AC長為6,由菱形的性質及勾股定理可得AC⊥BD,BO=4,分當點E在對角線交點左側時(如圖1)和當點E在對角線交點左側時(如圖2)兩種情況求BE得長即可.【題目詳解】解:當點E在對角線交點左側時,如圖1所示:∵菱形ABCD中,邊長為1,對角線AC長為6,∴AC⊥BD,BO==4,∵tan∠EAC=,解得:OE=1,∴BE=BO﹣OE=4﹣1=3,當點E在對角線交點左側時,如圖2所示:∵菱形ABCD中,邊長為1,對角線AC長為6,∴AC⊥BD,BO==4,∵tan∠EAC=,解得:OE=1,∴BE=BO﹣OE=4+1=1,故答案為3或1.【題目點撥】本題主要考查了菱形的性質,解決問題時要注意分當點E在對角線交點左側時和當點E在對角線交點左側時兩種情況求BE得長.14、22°【解題分析】

由AE∥BD,根據平行線的性質求得∠CBD的度數,再由對頂角相等求得∠CDB的度數,繼而利用三角形的內角和等于180°求得∠C的度數.【題目詳解】解:∵AE∥BD,∠1=130°,∠2=28°,∴∠CBD=∠1=130°,∠CDB=∠2=28°,∴∠C=180°﹣∠CBD﹣∠CDB=180°﹣130°﹣28°=22°.故答案為22°【題目點撥】本題考查了平行線的性質,對頂角相等及三角形內角和定理.熟練運用相關知識是解決問題的關鍵.15、y1<y1【解題分析】

直接利用一次函數的性質分析得出答案.【題目詳解】解:∵直線經過第一、三、四象限,∴y隨x的增大而增大,∵x1<x1,∴y1與y1的大小關系為:y1<y1.故答案為:y1<y1.【題目點撥】此題主要考查了一次函數圖象上點的坐標特征,正確掌握一次函數增減性是解題關鍵.16、【解題分析】

設A點的橫坐標為a,把x=a代入得,則點A的坐標為(a,).∵AC⊥y軸,AE⊥x軸,∴C點坐標為(0,),B點的縱坐標為,E點坐標為(a,0),D點的橫坐標為a.∵B點、D點在上,∴當y=時,x=;當x=a,y=.∴B點坐標為(,),D點坐標為(a,).∴AB=a-=,AC=a,AD=-=,AE=.∴AB=AC,AD=AE.又∵∠BAD=∠CAD,∴△BAD∽△CAD.∴.三、解答題(共8題,共72分)17、(1)x=1,y=;(2)小華的打車總費用為18元.【解題分析】試題分析:(1)根據表格內容列出關于x、y的方程組,并解方程組.

(2)根據里程數和時間來計算總費用.試題解析:(1)由題意得,解得;(2)小華的里程數是11km,時間為14min.則總費用是:11x+14y=11+7=18(元).答:總費用是18元.18、(1)拋物線的解析式為.(2)平移后的拋物線解析式為:.(3)點的坐標為或.【解題分析】分析:(1)利用待定系數法,將點A,B的坐標代入解析式即可求得;(2)根據旋轉的知識可得:A(1,0),B(0,2),∴OA=1,OB=2,可得旋轉后C點的坐標為(3,1),當x=3時,由y=x2-3x+2得y=2,可知拋物線y=x2-3x+2過點(3,2)∴將原拋物線沿y軸向下平移1個單位后過點C.∴平移后的拋物線解析式為:y=x2-3x+1;(3)首先求得B1,D1的坐標,根據圖形分別求得即可,要注意利用方程思想.詳解:(1)已知拋物線經過,,∴,解得,∴所求拋物線的解析式為.(2)∵,,∴,,可得旋轉后點的坐標為.當時,由得,可知拋物線過點.∴將原拋物線沿軸向下平移1個單位長度后過點.∴平移后的拋物線解析式為:.(3)∵點在上,可設點坐標為,將配方得,∴其對稱軸為.由題得B1(0,1).①當時,如圖①,∵,∴,∴,此時,∴點的坐標為.②當時,如圖②,同理可得,∴,此時,∴點的坐標為.綜上,點的坐標為或.點睛:此題屬于中考中的壓軸題,難度較大,知識點考查的較多而且聯系密切,需要學生認真審題.此題考查了二次函數與一次函數的綜合知識,解題的關鍵是要注意數形結合思想的應用.19、(1)作圖見解析;(2)A1(0,1),點B1(﹣2,2).(3)【解題分析】

(1)按要求作圖.(2)由(1)得出坐標.(3)由圖觀察得到,再根據勾股定理得到長度.【題目詳解】解:(1)畫出△A1OB1,如圖.(2)點A1(0,1),點B1(﹣2,2).(3)OB1=OB==2.【題目點撥】本題主要考查的是繪圖、識圖、勾股定理等知識點,熟練掌握方法是本題的解題關鍵.20、(1);(2);(3)第一題.【解題分析】

(1)由第一道單選題有3個選項,直接利用概率公式求解即可求得答案;(2)畫出樹狀圖,再由樹狀圖求得所有等可能的結果與小明順利通關的情況,繼而利用概率公式即可求得答案;(3)由如果在第一題使用“求助”小明順利通關的概率為:;如果在第二題使用“求助”小明順利通關的概率為:;即可求得答案.【題目詳解】(1)如果小明第一題不使用“求助”,那么小明答對第一道題的概率=;故答案為;(2)畫樹狀圖為:共有9種等可能的結果數,其中兩個都正確的結果數為1,所以小明順利通關的概率為;(3)建議小明在第一題使用“求助”.理由如下:小明將“求助”留在第一題,畫樹狀圖為:小明將“求助”留在第一題使用,小明順利通關的概率=,因為>,所以建議小明在第一題使用“求助”.【題目點撥】本題考查的是概率,熟練掌握樹狀圖法和概率公式是解題的關鍵.21、(1)證明見解析;(2)補圖見解析;.【解題分析】

根據等腰三角形的性質得到,等量代換得到,根據余角的性質即可得到結論;根據平行線的判定定理得到AD∥BG,推出四邊形ABGD是平行四邊形,得到平行四邊形ABGD是菱形,設AB=BG=GD=AD=x,解直角三角形得到,過點B作于H,根據平行四邊形的面積公式即可得到結論.【題目詳解】解:,,,,,,,,;補全圖形,如圖所示:,,,,,,,,,且,,,,四邊形ABGD是平行四邊形,,平行四邊形ABGD是菱形,設,,,,過點B作于H,..故答案為(1)證明見解析;(2)補圖見解析;.【題目點撥】本題考查等腰三角形的性質,平行四邊形的判定和性質,菱形的判定和性質,解題的關鍵是正確的作出輔助線.22、(1)y=﹣2t+200(1≤t≤80,t為整數);(2)第30天的日銷售利潤最大,最大利潤為2450元;(3)共有21天符合條件.【解題分析】

(1)根據函數圖象,設解析式為y=kt+b,將(1,198)、(80,40)代入,利用待定系數法求解可得;

(2)設日銷售利潤為w,根據“總利潤=每千克利潤×銷售量”列出函數解析式,由二次函數的性質分別求得最值即可判斷;

(3)求出w=2400時t的值,結合函數圖象即可得出答案;【題目詳解】(1)設解析式為y=kt+b,將(1,198)、(80,40)代入,得:,解得:,∴y=﹣2t+200(1≤t≤80,t為整數);(2)設日銷售利潤為w,則w=(p﹣6)y,當1≤t≤80時,w=(t+16﹣6)(﹣2t+200)=﹣(t﹣30)2+2450,∴當t=30時,w最大=2450;∴第30天的日銷售利潤最大,最大利潤為2450元.(3)由(2)得:當1≤t≤80時,w=﹣(t﹣30)2+2450,令w=2400,即﹣(t﹣30)2+2450=2400,解得:t1=20、t2=40,∴t的取值范圍是20≤t≤40,∴共有21天符合條件.【題目點撥】本題考查二次函數的應用,熟練掌握待定系數求函數解析式、由相等關系得出利潤的函數解析式、利用二次函數的圖象解不等式及二次函數的圖象與性質是解題關鍵.23、(1)2,2;(2)2,理由見解析;(3)2.【解題分析】

(1)作P5H5垂直于x軸,垂足為H5,把四邊形P1P2P3P2和四邊形P2P3P2P5的轉化為SP1P2P3P2=S△OP1H1﹣S△OP3H3﹣S梯形P2H2H3P3﹣S梯形P1H1H2P2和SP2P3P2P5=S梯形P5H5H2P2﹣S△P5H5O﹣S△OH3P3﹣S梯形P2H2H3P3來求解;(2)(3)由圖可知,Pn﹣1、Pn、Pn+1、Pn+2的橫坐標為n﹣5,n﹣2,n﹣3,n﹣2,代入二次函數解析式,可得Pn﹣1、Pn、Pn+1、Pn+2的縱坐標為(n﹣5)2,(n﹣2)2,(n﹣3)2,(n﹣2)2,將四邊形面積轉化為S四邊形Pn﹣1PnPn+1Pn+2=S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣2Hn﹣2Hn﹣3Pn﹣3﹣S梯形Pn﹣3Hn﹣3Hn﹣2Pn﹣2來解答.【題目詳解】(1)作P5H5垂直于x軸,垂足為H5,由圖可知SP1P2P3P2=S△O

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論