




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年江蘇省常州市常州高級中學高三數學第一學期期末統(tǒng)考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,則()A. B. C. D.2.已知雙曲線的左焦點為,直線經過點且與雙曲線的一條漸近線垂直,直線與雙曲線的左支交于不同的兩點,,若,則該雙曲線的離心率為().A. B. C. D.3.定義運算,則函數的圖象是().A. B.C. D.4.復數滿足為虛數單位),則的虛部為()A. B. C. D.5.對兩個變量進行回歸分析,給出如下一組樣本數據:,,,,下列函數模型中擬合較好的是()A. B. C. D.6.正四棱錐的五個頂點在同一個球面上,它的底面邊長為,側棱長為,則它的外接球的表面積為()A. B. C. D.7.某四棱錐的三視圖如圖所示,記為此棱錐所有棱的長度的集合,則().A.,且 B.,且C.,且 D.,且8.已知實數、滿足不等式組,則的最大值為()A. B. C. D.9.某幾何體的三視圖如圖所示,三視圖是腰長為1的等腰直角三角形和邊長為1的正方形,則該幾何體中最長的棱長為().A. B. C.1 D.10.若的展開式中的系數之和為,則實數的值為()A. B. C. D.111.函數與的圖象上存在關于直線對稱的點,則的取值范圍是()A. B. C. D.12.已知函數f(x)=xex2+axeA.1 B.-1 C.a D.-a二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的焦距為__________,漸近線方程為________.14.在中,點在邊上,且,設,,則________(用,表示)15.為了抗擊新型冠狀病毒肺炎,某醫(yī)藥公司研究出一種消毒劑,據實驗表明,該藥物釋放量與時間的函數關系為(如圖所示),實驗表明,當藥物釋放量對人體無害.(1)______;(2)為了不使人身體受到藥物傷害,若使用該消毒劑對房間進行消毒,則在消毒后至少經過______分鐘人方可進入房間.16.設為偶函數,且當時,;當時,.關于函數的零點,有下列三個命題:①當時,存在實數m,使函數恰有5個不同的零點;②若,函數的零點不超過4個,則;③對,,函數恰有4個不同的零點,且這4個零點可以組成等差數列.其中,正確命題的序號是_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列是各項均為正數的等比數列,數列為等差數列,且,,.(1)求數列與的通項公式;(2)求數列的前項和;(3)設為數列的前項和,若對于任意,有,求實數的值.18.(12分)曲線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的極坐標方程和曲線的直角坐標方程;(2)過原點且傾斜角為的射線與曲線分別交于兩點(異于原點),求的取值范圍.19.(12分)記函數的最小值為.(1)求的值;(2)若正數,,滿足,證明:.20.(12分)如圖,在三棱錐中,,,側面為等邊三角形,側棱.(1)求證:平面平面;(2)求三棱錐外接球的體積.21.(12分)為貫徹十九大報告中“要提供更多優(yōu)質生態(tài)產品以滿足人民日益增長的優(yōu)美生態(tài)環(huán)境需要”的要求,某生物小組通過抽樣檢測植物高度的方法來監(jiān)測培育的某種植物的生長情況.現分別從、、三塊試驗田中各隨機抽取株植物測量高度,數據如下表(單位:厘米):組組組假設所有植株的生長情況相互獨立.從、、三組各隨機選株,組選出的植株記為甲,組選出的植株記為乙,組選出的植株記為丙.(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有數據的平均數記為.從、、三塊試驗田中分別再隨機抽取株該種植物,它們的高度依次是、、(單位:厘米).這個新數據與表格中的所有數據構成的新樣本的平均數記為,試比較和的大小.(結論不要求證明)22.(10分)在四棱錐中,底面為直角梯形,,,,,,,分別為,的中點.(1)求證:.(2)若,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
先求出集合B,再與集合A求交集即可.【詳解】由已知,,故,所以.故選:D.【點睛】本題考查集合的交集運算,考查學生的基本運算能力,是一道容易題.2、A【解析】
直線的方程為,令和雙曲線方程聯(lián)立,再由得到兩交點坐標縱坐標關系進行求解即可.【詳解】由題意可知直線的方程為,不妨設.則,且將代入雙曲線方程中,得到設則由,可得,故則,解得則所以雙曲線離心率故選:A【點睛】此題考查雙曲線和直線相交問題,聯(lián)立直線和雙曲線方程得到兩交點坐標關系和已知條件即可求解,屬于一般性題目.3、A【解析】
由已知新運算的意義就是取得中的最小值,因此函數,只有選項中的圖象符合要求,故選A.4、C【解析】
,分子分母同乘以分母的共軛復數即可.【詳解】由已知,,故的虛部為.故選:C.【點睛】本題考查復數的除法運算,考查學生的基本運算能力,是一道基礎題.5、D【解析】
作出四個函數的圖象及給出的四個點,觀察這四個點在靠近哪個曲線.【詳解】如圖,作出A,B,C,D中四個函數圖象,同時描出題中的四個點,它們在曲線的兩側,與其他三個曲線都離得很遠,因此D是正確選項,故選:D.【點睛】本題考查回歸分析,擬合曲線包含或靠近樣本數據的點越多,說明擬合效果好.6、C【解析】
如圖所示,在平面的投影為正方形的中心,故球心在上,計算長度,設球半徑為,則,解得,得到答案.【詳解】如圖所示:在平面的投影為正方形的中心,故球心在上,,故,,設球半徑為,則,解得,故.故選:.【點睛】本題考查了四棱錐的外接球問題,意在考查學生的空間想象能力和計算能力.7、D【解析】
首先把三視圖轉換為幾何體,根據三視圖的長度,進一步求出個各棱長.【詳解】根據幾何體的三視圖轉換為幾何體為:該幾何體為四棱錐體,如圖所示:所以:,,.故選:D..【點睛】本題考查三視圖和幾何體之間的轉換,主要考查運算能力和轉換能力及思維能力,屬于基礎題.8、A【解析】
畫出不等式組所表示的平面區(qū)域,結合圖形確定目標函數的最優(yōu)解,代入即可求解,得到答案.【詳解】畫出不等式組所表示平面區(qū)域,如圖所示,由目標函數,化為直線,當直線過點A時,此時直線在y軸上的截距最大,目標函數取得最大值,又由,解得,所以目標函數的最大值為,故選A.【點睛】本題主要考查簡單線性規(guī)劃求解目標函數的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標函數的最優(yōu)解是解答的關鍵,著重考查了數形結合思想,及推理與計算能力,屬于基礎題.9、B【解析】
首先由三視圖還原幾何體,進一步求出幾何體的棱長.【詳解】解:根據三視圖還原幾何體如圖所示,所以,該四棱錐體的最長的棱長為.故選:B.【點睛】本題主要考查由三視圖還原幾何體,考查運算能力和推理能力,屬于基礎題.10、B【解析】
由,進而分別求出展開式中的系數及展開式中的系數,令二者之和等于,可求出實數的值.【詳解】由,則展開式中的系數為,展開式中的系數為,二者的系數之和為,得.故選:B.【點睛】本題考查二項式定理的應用,考查學生的計算求解能力,屬于基礎題.11、C【解析】
由題可知,曲線與有公共點,即方程有解,可得有解,令,則,對分類討論,得出時,取得極大值,也即為最大值,進而得出結論.【詳解】解:由題可知,曲線與有公共點,即方程有解,即有解,令,則,則當時,;當時,,故時,取得極大值,也即為最大值,當趨近于時,趨近于,所以滿足條件.故選:C.【點睛】本題主要考查利用導數研究函數性質的基本方法,考查化歸與轉化等數學思想,考查抽象概括、運算求解等數學能力,屬于難題.12、A【解析】
令xex=t,構造g(x)=xex,要使函數f(x)=xex2+axex-a有三個不同的零點x1,x2,【詳解】令xex=t,構造g(x)=xex,求導得g'(x)=故g(x)在-∞,1上單調遞增,在1,+∞上單調遞減,且x<0時,g(x)<0,x>0時,g(x)>0,g(x)max=g(1)=1e,可畫出函數g(x)的圖象(見下圖),要使函數f(x)=xex2+axex-a有三個不同的零點x1,x若a>0,即t1+t2=-a<0t1故1-x若a<-4,即t1+t2=-a>4t1故選A.【點睛】解決函數零點問題,常常利用數形結合、等價轉化等數學思想.二、填空題:本題共4小題,每小題5分,共20分。13、6【解析】由題得所以焦距,故第一個空填6.由題得漸近線方程為.故第二個空填.14、【解析】
結合圖形及向量的線性運算將轉化為用向量表示,即可得到結果.【詳解】在中,因為,所以,又因為,所以.故答案為:【點睛】本題主要考查三角形中向量的線性運算,關鍵是利用已知向量為基底,將未知向量通過幾何條件向基底轉化.15、240【解析】
(1)由時,,即可得出的值;(2)解不等式組,即可得出答案.【詳解】(1)由圖可知,當時,,即(2)由題意可得,解得則為了不使人身體受到藥物傷害,若使用該消毒劑對房間進行消毒,則在消毒后至少經過分鐘人方可進入房間.故答案為:(1)2;(2)40【點睛】本題主要考查了分段函數的應用,屬于中檔題.16、①②③【解析】
根據偶函數的圖象關于軸對稱,利用已知中的條件作出偶函數的圖象,利用圖象對各個選項進行判斷即可.【詳解】解:當時又因為為偶函數可畫出的圖象,如下所示:可知當時有5個不同的零點;故①正確;若,函數的零點不超過4個,即,與的交點不超過4個,時恒成立又當時,在上恒成立在上恒成立由于偶函數的圖象,如下所示:直線與圖象的公共點不超過個,則,故②正確;對,偶函數的圖象,如下所示:,使得直線與恰有4個不同的交點點,且相鄰點之間的距離相等,故③正確.故答案為:①②③【點睛】本題考查函數方程思想,數形結合思想,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(2)(3)【解析】
(1)假設公差,公比,根據等差數列和等比數列的通項公式,化簡式子,可得,,然后利用公式法,可得結果.(2)根據(1)的結論,利用錯位相減法求和,可得結果.(3)計算出,代值計算并化簡,可得結果.【詳解】解:(1)依題意:,即,解得:所以,(2),,,上面兩式相減,得:則即所以,(3),所以由得,,即【點睛】本題主要考查等差數列和等比數列的綜合應用,以及利用錯位相減法求和,屬基礎題.18、(1),;(2).【解析】
(1)先將曲線化為普通方程,再由直角坐標系與極坐標系之間的轉化關系:,可得極坐標方程和曲線的直角坐標方程;(2)由已知可得出射線的極坐標方程為,聯(lián)立和的極坐標方程可得點A和點B的極坐標,從而得出,由的范圍可求得的取值范圍.【詳解】(1)曲線的普通方程為,即,其極坐標方程為;曲線的極坐標方程為,即,其直角坐標方程為;(2)射線的極坐標方程為,聯(lián)立,聯(lián)立,的取值范圍是【點睛】本題考查圓的參數方程與普通方程互化,圓,拋物線的極坐標方程與普通方程的互化,以及在極坐標下的直線與圓和拋物線的位置關系,屬于中檔題.19、(1)(2)證明見解析【解析】
(1)將函數轉化為分段函數或利用絕對值三角不等式進行求解;(2)利用基本不等式或柯西不等式證明即可.【詳解】解法一:(1)當時,,當,,當時,,所以解法二:(1)如圖當時,解法三:(1)當且僅當即時,等號成立.當時解法一:(2)由題意可知,,因為,,,所以要證明不等式,只需證明,因為成立,所以原不等式成立.解法二:(2)因為,,,所以,,又因為,所以,所以,原不等式得證.補充:解法三:(2)由題意可知,,因為,,,所以要證明不等式,只需證明,由柯西不等式得:成立,所以原不等式成立.【點睛】本題主要考查了絕對值函數的最值求解,不等式的證明,絕對值三角不等式,基本不等式及柯西不等式的應用,考查了學生的邏輯推理和運算求解能力.20、(1)見解析;(2).【解析】
(1)設中點為,連接、,利用等腰三角形三線合一的性質得出,利用勾股定理得出,由線面垂直的判定定理可證得平面,再利用面面垂直的判定定理可得出平面平面;(2)先確定三棱錐的外接球球心的位置,利用三角形相似求出外接球的半徑,再由球體的體積公式可求得結果.【詳解】(1)設中點為,連接、,因為,所以.又,所以,又由已知,,則,所以,.又為正三角形,且,所以,因為,所以,,,平面,又平面,平面平面;(2)由于是底面直角三角形的斜邊的中點,所以點是的外心,由(1)知平面,所以三棱錐的外接球的球心在上.在中,的垂直平分線與的交點即為球心,記的中點為點,則.由與相似可得,所以.所以三棱錐外接球的體積為.【點睛】本題考查面面垂直的證明,同時也考查了三棱錐外接球體積的計算,找出外接球球心的位置是解答的關鍵,考查推理能力與計算能力,屬于中等題.21、(1);(2);(3).【解析】
設事件為“甲是組的第株植物”,事件為“乙是組的第株植物”,事件為“丙是組的第株植物”,、、、,可得出.(1)設事件為“丙的高度小于厘米”,可得,且、互斥,利用互斥事件的概率公式可求得結果;(2)設事件為“甲的高度大于乙的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 簡化流程房屋買賣合同協(xié)議書
- 湛江科技學院《化工原理實驗(二)》2023-2024學年第二學期期末試卷
- 南開中學初2025年初三練習題一(全國卷I)生物試題含解析
- 遼寧省大連市金普新區(qū)2025年小學六年級第二學期小升初數學試卷含解析
- 泉州輕工職業(yè)學院《國際貿易單證》2023-2024學年第二學期期末試卷
- 山東省菏澤市成武縣實驗小學2025屆四下數學期末綜合測試試題含解析
- 浙江省安慶市2025屆四下數學期末聯(lián)考模擬試題含解析
- 天津理工大學中環(huán)信息學院《影像核醫(yī)學與分子影像》2023-2024學年第二學期期末試卷
- 無錫工藝職業(yè)技術學院《UI及用戶體驗設計》2023-2024學年第二學期期末試卷
- 荊州學院《中國古代文學史一先秦兩漢文學》2023-2024學年第二學期期末試卷
- 中醫(yī)科胸痹(冠心病-心絞痛)中醫(yī)診療方案
- 2023-2024全國初中物理競賽試題:光的反射及折射(含答案)
- 《軍事理論與軍事技能》全套教學課件
- 夫妻離婚協(xié)議書電子版
- 2024無障礙設施行業(yè)趨勢分析
- 2023年茶藝師(中級)證考試題庫及答案
- 分析余華《活著》中的人性與生存
- 24春國家開放大學《教育法學》終結性考試(大作業(yè))參考答案
- 小米汽車發(fā)布會
- 2024年大學試題(宗教學)-道教文化筆試歷年真題薈萃含答案
- 2023-2024學年七年級生物冀少版下冊期末測試卷(一)
評論
0/150
提交評論