六盤水市重點中學2024屆中考數學最后沖刺濃縮精華卷含解析_第1頁
六盤水市重點中學2024屆中考數學最后沖刺濃縮精華卷含解析_第2頁
六盤水市重點中學2024屆中考數學最后沖刺濃縮精華卷含解析_第3頁
六盤水市重點中學2024屆中考數學最后沖刺濃縮精華卷含解析_第4頁
六盤水市重點中學2024屆中考數學最后沖刺濃縮精華卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

六盤水市重點中學2024學年中考數學最后沖刺濃縮精華卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,點P是∠AOB外的一點,點M,N分別是∠AOB兩邊上的點,點P關于OA的對稱點Q恰好落在線段MN上,點P關于OB的對稱點R落在MN的延長線上,若PM=2.5cm,PN=3cm,MN=4cm,則線段QR的長為()A.4.5cm B.5.5cm C.6.5cm D.7cm2.廣西2017年參加高考的學生約有365000人,將365000這個數用科學記數法表示為()A.3.65×103 B.3.65×104 C.3.65×105 D.3.65×1063.下列幾何體中三視圖完全相同的是()A. B. C. D.4.如圖,在中,,,,點分別在上,于,則的面積為()A. B. C. D.5.七年級1班甲、乙兩個小組的14名同學身高(單位:厘米)如下:甲組158159160160160161169乙組158159160161161163165以下敘述錯誤的是()A.甲組同學身高的眾數是160B.乙組同學身高的中位數是161C.甲組同學身高的平均數是161D.兩組相比,乙組同學身高的方差大6.如圖,AB∥CD,點E在線段BC上,若∠1=40°,∠2=30°,則∠3的度數是()A.70° B.60° C.55° D.50°7.二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法:①2a+b=0,②當﹣1≤x≤3時,y<0;③3a+c=0;④若(x1,y1)(x2、y2)在函數圖象上,當0<x1<x2時,y1<y2,其中正確的是()A.①②④ B.①③ C.①②③ D.①③④8.如圖,正方形ABCD的邊長為2,其面積標記為S1,以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標記為S2,…,按照此規律繼續下去,則S2018的值為()A. B. C. D.9.若M(2,2)和N(b,﹣1﹣n2)是反比例函數y=的圖象上的兩個點,則一次函數y=kx+b的圖象經過()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限10.6的絕對值是()A.6 B.﹣6 C. D.11.如圖,Rt△ABC中,∠C=90°,AC=4,BC=4,兩等圓⊙A,⊙B外切,那么圖中兩個扇形(即陰影部分)的面積之和為()A.2π B.4π C.6π D.8π12.3點40分,時鐘的時針與分針的夾角為()A.140° B.130° C.120° D.110°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.有公共頂點A,B的正五邊形和正六邊形按如圖所示位置擺放,連接AC交正六邊形于點D,則∠ADE的度數為()A.144° B.84° C.74° D.54°14.已知線段a=4,線段b=9,則a,b的比例中項是_____.15.如圖,在菱形ABCD中,AB=BD.點E、F分別在AB、AD上,且AE=DF.連接BF與DE相交于點G,連接CG與BD相交于點H.下列結論:①△AED≌△DFB;②S四邊形BCDG=CG2;③若AF=2DF,則BG=6GF.其中正確的結論有_____.(填序號)16.已知、為兩個連續的整數,且,則=________.17.在Rt△ABC中,∠A是直角,AB=2,AC=3,則BC的長為_____.18.已知點P(2,3)在一次函數y=2x-m的圖象上,則m=_______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分).在一個不透明的布袋中裝有三個小球,小球上分別標有數字﹣1、0、2,它們除了數字不同外,其他都完全相同.隨機地從布袋中摸出一個小球,則摸出的球為標有數字2的小球的概率為;小麗先從布袋中隨機摸出一個小球,記下數字作為平面直角坐標系內點M的橫坐標.再將此球放回、攪勻,然后由小華再從布袋中隨機摸出一個小球,記下數字作為平面直角坐標系內點M的縱坐標,請用樹狀圖或表格列出點M所有可能的坐標,并求出點M落在如圖所示的正方形網格內(包括邊界)的概率.20.(6分)已知二次函數y=x2-4x-5,與y軸的交點為P,與x軸交于A、B兩點.(點B在點A的右側)(1)當y=0時,求x的值.(2)點M(6,m)在二次函數y=x2-4x-5的圖像上,設直線MP與x軸交于點C,求cot∠MCB的值.21.(6分)在平面直角坐標系xOy中,若拋物線頂點A的橫坐標是,且與y軸交于點,點P為拋物線上一點.求拋物線的表達式;若將拋物線向下平移4個單位,點P平移后的對應點為如果,求點Q的坐標.22.(8分)綜合與實踐﹣﹣旋轉中的數學問題背景:在一次綜合實踐活動課上,同學們以兩個矩形為對象,研究相似矩形旋轉中的問題:已知矩形ABCD∽矩形A′B′C′D′,它們各自對角線的交點重合于點O,連接AA′,CC′.請你幫他們解決下列問題:觀察發現:(1)如圖1,若A′B′∥AB,則AA′與CC′的數量關系是______;操作探究:(2)將圖1中的矩形ABCD保持不動,矩形A′B′C′D′繞點O逆時針旋轉角度α(0°<α≤90°),如圖2,在矩形A′B′C′D′旋轉的過程中,(1)中的結論還成立嗎?若成立,請證明;若不成立,請說明理由;操作計算:(3)如圖3,在(2)的條件下,當矩形A′B′C′D′繞點O旋轉至AA′⊥A′D′時,若AB=6,BC=8,A′B′=3,求AA′的長.23.(8分)已知:如圖,AB=AC,點D是BC的中點,AB平分∠DAE,AE⊥BE,垂足為E.求證:AD=AE.24.(10分)如圖,在平面直角坐標系中,點的坐標為,以點為圓心,8為半徑的圓與軸交于,兩點,過作直線與軸負方向相交成的角,且交軸于點,以點為圓心的圓與軸相切于點.(1)求直線的解析式;(2)將以每秒1個單位的速度沿軸向左平移,當第一次與外切時,求平移的時間.25.(10分)(1)計算:(1﹣)0﹣|﹣2|+;(2)如圖,在等邊三角形ABC中,點D,E分別是邊BC,AC的中點,過點E作EF⊥DE,交BC的延長線于點F,求∠F的度數.26.(12分)水果店老板用600元購進一批水果,很快售完;老板又用1250元購進第二批水果,所購件數是第一批的2倍,但進價比第一批每件多了5元,問第一批水果每件進價多少元?27.(12分)如圖,在平面直角坐標系中,一次函數y=kx+b與反比例函數y=(m≠0)的圖象交于點A(3,1),且過點B(0,﹣2).(1)求反比例函數和一次函數的表達式;(2)如果點P是x軸上一點,且△ABP的面積是3,求點P的坐標.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解題分析】試題分析:利用軸對稱圖形的性質得出PM=MQ,PN=NR,進而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的長RN+NQ=3+2.5=3.5(cm).故選A.考點:軸對稱圖形的性質2、C【解題分析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【題目詳解】解:將365000這個數用科學記數法表示為3.65×1.故選C.【題目點撥】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.3、A【解題分析】

找到從物體正面、左面和上面看得到的圖形全等的幾何體即可.【題目詳解】解:A、球的三視圖完全相同,都是圓,正確;B、圓柱的俯視圖與主視圖和左視圖不同,錯誤;C、圓錐的俯視圖與主視圖和左視圖不同,錯誤;D、四棱錐的俯視圖與主視圖和左視圖不同,錯誤;故選A.【題目點撥】考查三視圖的有關知識,注意三視圖都相同的常見的幾何體有球和正方體.4、C【解題分析】

先利用三角函數求出BE=4m,同(1)的方法判斷出∠1=∠3,進而得出△ACQ∽△CEP,得出比例式求出PE,最后用面積的差即可得出結論;【題目詳解】∵,

∴CQ=4m,BP=5m,

在Rt△ABC中,sinB=,tanB=,

如圖2,過點P作PE⊥BC于E,

在Rt△BPE中,PE=BP?sinB=5m×=3m,tanB=,

∴,

∴BE=4m,CE=BC-BE=8-4m,

同(1)的方法得,∠1=∠3,

∵∠ACQ=∠CEP,

∴△ACQ∽△CEP,

∴,∴,

∴m=,

∴PE=3m=,

∴S△ACP=S△ACB-S△PCB=BC×AC-BC×PE=BC(AC-PE)=×8×(6-)=,故選C.【題目點撥】本題是相似形綜合題,主要考查了相似三角形的判定和性質,三角形的面積的計算方法,判斷出△ACQ∽△CEP是解題的關鍵.5、D【解題分析】

根據眾數、中位數和平均數及方差的定義逐一判斷可得.【題目詳解】A.甲組同學身高的眾數是160,此選項正確;B.乙組同學身高的中位數是161,此選項正確;C.甲組同學身高的平均數是161,此選項正確;D.甲組的方差為,乙組的方差為,甲組的方差大,此選項錯誤.故選D.【題目點撥】本題考查了眾數、中位數和平均數及方差,掌握眾數、中位數和平均數及方差的定義和計算公式是解題的關鍵.6、A【解題分析】試題分析:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故選A.考點:平行線的性質.7、B【解題分析】∵函數圖象的對稱軸為:x=-==1,∴b=﹣2a,即2a+b=0,①正確;由圖象可知,當﹣1<x<3時,y<0,②錯誤;由圖象可知,當x=1時,y=0,∴a﹣b+c=0,∵b=﹣2a,∴3a+c=0,③正確;∵拋物線的對稱軸為x=1,開口方向向上,∴若(x1,y1)、(x2,y2)在函數圖象上,當1<x1<x2時,y1<y2;當x1<x2<1時,y1>y2;故④錯誤;故選B.點睛:本題主要考查二次函數的相關知識,解題的關鍵是:由拋物線的開口方向判斷a與0的關系,由拋物線與y軸的交點判斷c與0的關系,然后根據對稱軸及拋物線與x軸交點情況進行推理.8、A【解題分析】

根據等腰直角三角形的性質可得出2S2=S1,根據數的變化找出變化規律“Sn=()n﹣2”,依此規律即可得出結論.【題目詳解】如圖所示,∵正方形ABCD的邊長為2,△CDE為等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴2S2=S1.觀察,發現規律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,∴Sn=()n﹣2.當n=2018時,S2018=()2018﹣2=()3.故選A.【題目點撥】本題考查了等腰直角三角形的性質、勾股定理,解題的關鍵是利用圖形找出規律“Sn=()n﹣2”.9、C【解題分析】

把(2,2)代入得k=4,把(b,﹣1﹣n2)代入得,k=b(﹣1﹣n2),即根據k、b的值確定一次函數y=kx+b的圖象經過的象限.【題目詳解】解:把(2,2)代入,得k=4,把(b,﹣1﹣n2)代入得:k=b(﹣1﹣n2),即,∵k=4>0,<0,∴一次函數y=kx+b的圖象經過第一、三、四象限,故選C.【題目點撥】本題考查了反比例函數圖象的性質以及一次函數經過的象限,根據反比例函數的性質得出k,b的符號是解題關鍵.10、A【解題分析】試題分析:1是正數,絕對值是它本身1.故選A.考點:絕對值.11、B【解題分析】

先依據勾股定理求得AB的長,從而可求得兩圓的半徑為4,然后由∠A+∠B=90°可知陰影部分的面積等于一個圓的面積的.【題目詳解】在△ABC中,依據勾股定理可知AB==8,∵兩等圓⊙A,⊙B外切,∴兩圓的半徑均為4,∵∠A+∠B=90°,∴陰影部分的面積==4π.故選:B.【題目點撥】本題主要考查的是相切兩圓的性質、勾股定理的應用、扇形面積的計算,求得兩個扇形的半徑和圓心角之和是解題的關鍵.12、B【解題分析】

根據時針與分針相距的份數乘以每份的度數,可得答案.【題目詳解】解:3點40分時針與分針相距4+=份,30°×=130,故選B.【題目點撥】本題考查了鐘面角,確定時針與分針相距的份數是解題關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、B【解題分析】正五邊形的內角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六邊形的內角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故選B.14、6【解題分析】

根據已知線段a=4,b=9,設線段x是a,b的比例中項,列出等式,利用兩內項之積等于兩外項之積即可得出答案.【題目詳解】解:∵a=4,b=9,設線段x是a,b的比例中項,∴,∴x2=ab=4×9=36,∴x=6,x=﹣6(舍去).故答案為6【題目點撥】本題主要考查比例線段問題,解題關鍵是利用兩內項之積等于兩外項之積解答.15、①②③【解題分析】

(1)由已知條件易得∠A=∠BDF=60°,結合BD=AB=AD,AE=DF,即可證得△AED≌△DFB,從而說明結論①正確;(2)由已知條件可證點B、C、D、G四點共圓,從而可得∠CDN=∠CBM,如圖,過點C作CM⊥BF于點M,過點C作CN⊥ED于點N,結合CB=CD即可證得△CBM≌△CDN,由此可得S四邊形BCDG=S四邊形CMGN=2S△CGN,在Rt△CGN中,由∠CGN=∠DBC=60°,∠CNG=90°可得GN=CG,CN=CG,由此即可求得S△CGN=CG2,從而可得結論②是正確的;(3)過點F作FK∥AB交DE于點K,由此可得△DFK∽△DAE,△GFK∽△GBE,結合AF=2DF和相似三角形的性質即可證得結論④成立.【題目詳解】(1)∵四邊形ABCD是菱形,BD=AB,∴AB=BD=BC=DC=DA,∴△ABD和△CBD都是等邊三角形,∴∠A=∠BDF=60°,又∵AE=DF,∴△AED≌△DFB,即結論①正確;(2)∵△AED≌△DFB,△ABD和△DBC是等邊三角形,∴∠ADE=∠DBF,∠DBC=∠CDB=∠BDA=60°,∴∠GBC+∠CDG=∠DBF+∠DBC+∠CDB+∠GDB=∠DBC+∠CDB+∠GDB+∠ADE=∠DBC+∠CDB+∠BDA=180°,∴點B、C、D、G四點共圓,∴∠CDN=∠CBM,如下圖,過點C作CM⊥BF于點M,過點C作CN⊥ED于點N,∴∠CDN=∠CBM=90°,又∵CB=CD,∴△CBM≌△CDN,∴S四邊形BCDG=S四邊形CMGN=2S△CGN,∵在Rt△CGN中,∠CGN=∠DBC=60°,∠CNG=90°∴GN=CG,CN=CG,∴S△CGN=CG2,∴S四邊形BCDG=2S△CGN,=CG2,即結論②是正確的;(3)如下圖,過點F作FK∥AB交DE于點K,∴△DFK∽△DAE,△GFK∽△GBE,∴,,∵AF=2DF,∴,∵AB=AD,AE=DF,AF=2DF,∴BE=2AE,∴,∴BG=6FG,即結論③成立.綜上所述,本題中正確的結論是:故答案為①②③點睛:本題是一道涉及菱形、相似三角形、全等三角形和含30°角的直角三角形等多種幾何圖形的判定與性質的題,題目難度較大,熟悉所涉及圖形的性質和判定方法,作出如圖所示的輔助線是正確解答本題的關鍵.16、11【解題分析】

根據無理數的性質,得出接近無理數的整數,即可得出a,b的值,即可得出答案.【題目詳解】∵a<<b,a、b為兩個連續的整數,

∴,

∴a=5,b=6,

∴a+b=11.

故答案為11.【題目點撥】本題考查的是估算無理數的大小,熟練掌握無理數是解題的關鍵.17、【解題分析】

根據勾股定理解答即可.【題目詳解】∵在Rt△ABC中,∠A是直角,AB=2,AC=3,∴BC===,故答案為:【題目點撥】此題考查勾股定理,關鍵是根據勾股定理解答.18、1【解題分析】

根據待定系數法求得一次函數的解析式,解答即可.【題目詳解】解:∵一次函數y=2x-m的圖象經過點P(2,3),∴3=4-m,解得m=1,故答案為:1.【題目點撥】此題主要考查了一次函數圖象上點的坐標特征,關鍵是根據待定系數法求得一次函數的解析式.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2)列表見解析,.【解題分析】試題分析:(1)一共有3種等可能的結果總數,摸出標有數字2的小球有1種可能,因此摸出的球為標有數字2的小球的概率為;(2)利用列表得出共有9種等可能的結果數,再找出點M落在如圖所示的正方形網格內(包括邊界)的結果數,可求得結果.試題解析:(1)P(摸出的球為標有數字2的小球)=;(2)列表如下:小華

小麗

-1

0

2

-1

(-1,-1)

(-1,0)

(-1,2)

0

(0,-1)

(0,0)

(0,2)

2

(2,-1)

(2,0)

(2,2)

共有9種等可能的結果數,其中點M落在如圖所示的正方形網格內(包括邊界)的結果數為6,∴P(點M落在如圖所示的正方形網格內)==.考點:1列表或樹狀圖求概率;2平面直角坐標系.20、(1),;(2)【解題分析】

(1)當y=0,則x2-4x-5=0,解方程即可得到x的值.(2)由題意易求M,P點坐標,再求出MP的直線方程,可得cot∠MCB.【題目詳解】(1)把代入函數解析式得,即,解得:,.(2)把代入得,即得,∵二次函數,與軸的交點為,∴點坐標為.設直線的解析式為,代入,得解得,∴,∴點坐標為,在中,又∵∴.【題目點撥】本題考查的知識點是拋物線與x軸的交點,二次函數的性質,解題的關鍵是熟練的掌握拋物線與x軸的交點,二次函數的性質.21、為;點Q的坐標為或.【解題分析】

依據拋物線的對稱軸方程可求得b的值,然后將點B的坐標代入線可求得c的值,即可求得拋物線的表達式;由平移后拋物線的頂點在x軸上可求得平移的方向和距離,故此,然后由點,軸可得到點Q和P關于x對稱,可求得點Q的縱坐標,將點Q的縱坐標代入平移后的解析式可求得對應的x的值,則可得到點Q的坐標.【題目詳解】拋物線頂點A的橫坐標是,,即,解得..將代入得:,拋物線的解析式為.拋物線向下平移了4個單位.平移后拋物線的解析式為,.,點O在PQ的垂直平分線上.又軸,點Q與點P關于x軸對稱.點Q的縱坐標為.將代入得:,解得:或.點Q的坐標為或.【題目點撥】本題主要考查的是二次函數的綜合應用,解答本題主要應用了待定系數法求二次函數的解析式、二次函數的平移規律、線段垂直平分線的性質,發現點Q與點P關于x軸對稱,從而得到點Q的縱坐標是解題的關鍵.22、(1)AA′=CC′;(2)成立,證明見解析;(3)AA′=【解題分析】

(1)連接AC、A′C′,根據題意得到點A、A′、C′、C在同一條直線上,根據矩形的性質得到OA=OC,OA′=OC′,得到答案;(2)連接AC、A′C′,證明△A′OA≌△C′OC,根據全等三角形的性質證明;(3)連接AC,過C作CE⊥AB′,交AB′的延長線于E,根據相似多邊形的性質求出B′C′,根據勾股定理計算即可.【題目詳解】(1)AA′=CC′,理由如下:連接AC、A′C′,∵矩形ABCD∽矩形A′B′C′D′,∠CAB=∠C′A′B′,∵A′B′∥AB,∴點A、A′、C′、C在同一條直線上,由矩形的性質可知,OA=OC,OA′=OC′,∴AA′=CC′,故答案為AA′=CC′;(2)(1)中的結論還成立,AA′=CC′,理由如下:連接AC、A′C′,則AC、A′C′都經過點O,由旋轉的性質可知,∠A′OA=∠C′OC,∵四邊形ABCD和四邊形A′B′C′D′都是矩形,∴OA=OC,OA′=OC′,在△A′OA和△C′OC中,,∴△A′OA≌△C′OC,∴AA′=CC′;(3)連接AC,過C作CE⊥AB′,交AB′的延長線于E,∵矩形ABCD∽矩形A′B′C′D′,∴,即,解得,B′C′=4,∵∠EB′C=∠B′C′C=∠E=90°,∴四邊形B′ECC′為矩形,∴EC=B′C′=4,在Rt△ABC中,AC==10,在Rt△AEC中,AE==2,∴AA′+B′E=2﹣3,又AA′=CC′=B′E,∴AA′=.【題目點撥】本題考查的是矩形的性質、旋轉變換的性質、全等三角形的判定和性質,掌握旋轉變換的性質、矩形的性質是解題的關鍵.23、見解析【解題分析】試題分析:證明簡單的線段相等,可證線段所在的三角形全等,結合本題,證△ADB≌△AEB即可.試題解析:∵AB=AC,點D是BC的中點,∴AD⊥BC,∴∠ADB=90°.∵AE⊥EB,∴∠E=∠ADB=90°.∵AB平分∠DAE,∴∠BAD=∠BAE.在△ADB和△AEB中,∠E=∠ADB,∠BAD=∠BAE,AB=AB,∴△ADB≌△AEB(AAS),∴AD=AE.24、(1)直線的解析式為:.(2)平移的時間為5秒.【解題分析】

(1)求直線的解析式,可以先求出A、C兩點的坐標,就可以根據待定系數法求出函數的解析式.(2)設⊙O2平移t秒后到⊙O3處與⊙O1第一次外切于點P,⊙O3與x軸相切于D1點,連接O1O3,O3D1.在直角△O1O3D1中,根據勾股定理,就可以求出O1D1,進而求出D1D的長,得到平移的時間.【題目詳解】(1)由題意得,∴點坐標為.∵在中,,,∴點的坐標為.設直線的解析式為,由過

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論