2024屆河北省石家莊市新華區十校聯考最后數學試題含解析_第1頁
2024屆河北省石家莊市新華區十校聯考最后數學試題含解析_第2頁
2024屆河北省石家莊市新華區十校聯考最后數學試題含解析_第3頁
2024屆河北省石家莊市新華區十校聯考最后數學試題含解析_第4頁
2024屆河北省石家莊市新華區十校聯考最后數學試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024學年河北省石家莊市新華區十校聯考最后數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖是由4個相同的正方體搭成的幾何體,則其俯視圖是()A. B. C. D.2.有四包真空包裝的火腿腸,每包以標準質量450g為基準,超過的克數記作正數,不足的克數記作負數.下面的數據是記錄結果,其中與標準質量最接近的是()A.+2 B.﹣3 C.+4 D.﹣13.已知⊙O的半徑為5,弦AB=6,P是AB上任意一點,點C是劣弧的中點,若△POC為直角三角形,則PB的長度()A.1 B.5 C.1或5 D.2或44.如圖,在Rt△ABC中,∠ACB=90°,點D,E分別是AB,BC的中點,點F是BD的中點.若AB=10,則EF=()A.2.5 B.3 C.4 D.55.如圖,反比例函數(x>0)的圖象經過矩形OABC對角線的交點M,分別于AB、BC交于點D、E,若四邊形ODBE的面積為9,則k的值為()A.1 B.2 C.3 D.46.下列圖形中既是中心對稱圖形又是軸對稱圖形的是()A. B. C. D.7.PM2.5是大氣壓中直徑小于或等于0.0000025m的顆粒物,將0.0000025用科學記數法表示為()A.0.25×10﹣5 B.0.25×10﹣6 C.2.5×10﹣5 D.2.5×10﹣68.6的絕對值是()A.6 B.﹣6 C. D.9.一個正比例函數的圖象過點(2,﹣3),它的表達式為()A. B. C. D.10.已知,則的值為A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.我們知道,四邊形具有不穩定性.如圖,在平面直角坐標系中,邊長為2的正方形ABCD的邊AB在x軸上,AB的中點是坐標原點O,固定點A,B,把正方形沿箭頭方向推,使點D落在y軸正半軸上點D'處,則點C的對應點C'的坐標為_____.12.在△ABC中,MN∥BC分別交AB,AC于點M,N;若AM=1,MB=2,BC=3,則MN的長為_____.13.如圖,已知是的高線,且,,則_________.14.計算兩個兩位數的積,這兩個數的十位上的數字相同,個位上的數字之和等于1.53×57=3021,38×32=1216,84×86=7224,71×79=2.(1)你發現上面每個數的積的規律是:十位數字乘以十位數字加一的積作為結果的千位和百位,兩個個位數字相乘的積作為結果的,請寫出一個符合上述規律的算式.(2)設其中一個數的十位數字為a,個位數字為b,請用含a,b的算式表示這個規律.15.若方程x2+(m2﹣1)x+1+m=0的兩根互為相反數,則m=______16.某市對九年級學生進行“綜合素質”評價,評價結果分為A,B,C,D,E五個等級.現隨機抽取了500名學生的評價結果作為樣本進行分析,繪制了如圖所示的統計圖.已知圖中從左到右的五個長方形的高之比為2:3:3:1:1,據此估算該市80000名九年級學生中“綜合素質”評價結果為“A”的學生約為_____人.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標系xOy中,函數y=kx(x<0)的圖象經過點A(-1,6),直線y=mx-2與x軸交于點B(①當n=-1時,判斷線段PD與PC的數量關系,并說明理由;②若PD≥2PC,結合函數的圖象,直接寫出n的取值范圍.18.(8分)如圖,直線y=﹣x+3分別與x軸、y交于點B、C;拋物線y=x2+bx+c經過點B、C,與x軸的另一個交點為點A(點A在點B的左側),對稱軸為l1,頂點為D.(1)求拋物線y=x2+bx+c的解析式.(2)點M(1,m)為y軸上一動點,過點M作直線l2平行于x軸,與拋物線交于點P(x1,y1),Q(x2,y2),與直線BC交于點N(x3,y3),且x2>x1>1.①結合函數的圖象,求x3的取值范圍;②若三個點P、Q、N中恰好有一點是其他兩點所連線段的中點,求m的值.19.(8分)樓房AB后有一假山,其坡度為i=1:,山坡坡面上E點處有一休息亭,測得假山坡腳C與樓房水平距離BC=30米,與亭子距離CE=18米,小麗從樓房頂測得E點的俯角為45°,求樓房AB的高.(注:坡度i是指坡面的鉛直高度與水平寬度的比)20.(8分)如圖,一次函數y=kx+b的圖象與反比例函數y=的圖象交于A(﹣2,1),B(1,n)兩點.求反比例函數和一次函數的解析式;根據圖象寫出一次函數的值大于反比例函數的值的x的取值范圍.21.(8分)元旦放假期間,小明和小華準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點被選中的可能性相同.(1)求小明選擇去白鹿原游玩的概率;(2)用樹狀圖或列表的方法求小明和小華都選擇去秦嶺國家植物園游玩的概率.22.(10分)如圖,△ABC內接與⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點P,OF∥BC交AC于AC點E,交PC于點F,連接AF(1)判斷AF與⊙O的位置關系并說明理由;(2)若⊙O的半徑為4,AF=3,求AC的長.23.(12分)為了了解市民“獲取新聞的最主要途徑”,某市記者開展了一次抽樣調查,根據調査結果繪制了如下尚不完整的統計圖:根據以上信息解答下列問題:這次接受調查的市民總人數是_______人;扇形統計圖中,“電視”所對應的圓心角的度數是_________;請補全條形統計圖;若該市約有80萬人,請你估計其中將“電腦和手機上網”作為“獲取新聞的最主要途徑”的總人數.24.已知頂點為A的拋物線y=a(x-)2-2經過點B(-,2),點C(,2).(1)求拋物線的表達式;(2)如圖1,直線AB與x軸相交于點M,與y軸相交于點E,拋物線與y軸相交于點F,在直線AB上有一點P,若∠OPM=∠MAF,求△POE的面積;(3)如圖2,點Q是折線A-B-C上一點,過點Q作QN∥y軸,過點E作EN∥x軸,直線QN與直線EN相交于點N,連接QE,將△QEN沿QE翻折得到△QEN′,若點N′落在x軸上,請直接寫出Q點的坐標.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解題分析】試題分析:從上面看是一行3個正方形.故選A考點:三視圖2、D【解題分析】試題解析:因為|+2|=2,|-3|=3,|+4|=4,|-1|=1,由于|-1|最小,所以從輕重的角度看,質量是-1的工件最接近標準工件.故選D.3、C【解題分析】

由點C是劣弧AB的中點,得到OC垂直平分AB,求得DA=DB=3,根據勾股定理得到OD==1,若△POC為直角三角形,只能是∠OPC=90°,則根據相似三角形的性質得到PD=2,于是得到結論.【題目詳解】∵點C是劣弧AB的中點,∴OC垂直平分AB,∴DA=DB=3,∴OD=,若△POC為直角三角形,只能是∠OPC=90°,則△POD∽△CPD,∴,∴PD2=4×1=4,∴PD=2,∴PB=3﹣2=1,根據對稱性得,當P在OC的左側時,PB=3+2=5,∴PB的長度為1或5.故選C.【題目點撥】考查了圓周角,弧,弦的關系,勾股定理,垂徑定理,正確左側圖形是解題的關鍵.4、A【解題分析】

先利用直角三角形的性質求出CD的長,再利用中位線定理求出EF的長.【題目詳解】∵∠ACB=90°,D為AB中點∴CD=1∵點E、F分別為BC、BD中點∴EF=1故答案為:A.【題目點撥】本題考查的知識點是直角三角形的性質和中位線定理,解題關鍵是尋找EF與題目已知長度的線段的數量關系.5、C【解題分析】

本題可從反比例函數圖象上的點E、M、D入手,分別找出△OCE、△OAD、矩形OABC的面積與|k|的關系,列出等式求出k值.【題目詳解】由題意得:E、M、D位于反比例函數圖象上,則,過點M作MG⊥y軸于點G,作MN⊥x軸于點N,則S□ONMG=|k|.又∵M為矩形ABCO對角線的交點,∴S矩形ABCO=4S□ONMG=4|k|,∵函數圖象在第一象限,k>0,∴.解得:k=1.故選C.【題目點撥】本題考查反比例函數系數k的幾何意義,過雙曲線上的任意一點分別向兩條坐標軸作垂線,與坐標軸圍成的矩形面積就等于|k|,本知識點是中考的重要考點,同學們應高度關注.6、C【解題分析】

根據軸對稱圖形和中心對稱圖形的概念,對各個選項進行判斷,即可得到答案.【題目詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故A錯誤;B、是軸對稱圖形,不是中心對稱圖形,故B錯誤;C、既是軸對稱圖形,也是中心對稱圖形,故C正確;D、既不是軸對稱圖形,也不是中心對稱圖形,故D錯誤;故選:C.【題目點撥】本題考查了軸對稱圖形和中心對稱圖形的概念,解題的關鍵是熟練掌握概念進行分析判斷.7、D【解題分析】

根據科學記數法的定義,科學記數法的表示形式為a×10n,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.在確定n的值時,看該數是大于或等于1還是小于1.當該數大于或等于1時,n為它的整數位數減1;當該數小于1時,-n為它第一個有效數字前0的個數(含小數點前的1個0).【題目詳解】解:0.0000025第一個有效數字前有6個0(含小數點前的1個0),從而.故選D.8、A【解題分析】試題分析:1是正數,絕對值是它本身1.故選A.考點:絕對值.9、A【解題分析】

利用待定系數法即可求解.【題目詳解】設函數的解析式是y=kx,根據題意得:2k=﹣3,解得:k=.∴函數的解析式是:.故選A.10、C【解題分析】由題意得,4?x?0,x?4?0,解得x=4,則y=3,則=,故選:C.二、填空題(本大題共6個小題,每小題3分,共18分)11、(2,)【解題分析】過C作CH于H,由題意得2AO=AD’,所以∠D’AO=60°,AO=1,AD’=2,勾股定理知OD’=,BH=AO所以C’(2,).故答案為(2,).12、1【解題分析】

∵MN∥BC,∴△AMN∽△ABC,∴,即,∴MN=1.故答案為1.13、4cm【解題分析】

根據三角形的高線的定義得到,根據直角三角形的性質即可得到結論.【題目詳解】解:∵是的高線,∴,∵,,∴.故答案為:4cm.【題目點撥】本題考查了三角形的角平分線、中線、高線,含30°角的直角三角形,熟練掌握直角三角形的性質是解題的關鍵.14、(1)十位和個位,44×46=2024;(2)10a(a+1)+b(1﹣b)【解題分析】分析:(1)、根據題意得出其一般性的規律,從而得出答案;(2)、利用代數式表示出其一般規律得出答案.詳解:(1)由已知等式知,每個數的積的規律是:十位數字乘以十位數字加一的積作為結果的千位和百位,兩個個位數字相乘的積作為結果的十位和個位,例如:44×46=2024,(2)(1a+b)(1a+1﹣b)=10a(a+1)+b(1﹣b).點睛:本題主要考查的是規律的發現與整理,屬于基礎題型.找出一般性的規律是解決這個問題的關鍵.15、﹣1【解題分析】

根據“方程x2+(m2﹣1)x+1+m=0的兩根互為相反數”,利用一元二次方程根與系數的關系,列出關于m的等式,解之,再把m的值代入原方程,找出符合題意的m的值即可.【題目詳解】∵方程x2+(m2﹣1)x+1+m=0的兩根互為相反數,∴1﹣m2=0,解得:m=1或﹣1,把m=1代入原方程得:x2+2=0,該方程無解,∴m=1不合題意,舍去,把m=﹣1代入原方程得:x2=0,解得:x1=x2=0,(符合題意),∴m=﹣1,故答案為﹣1.【題目點撥】本題考查了根與系數的關系,正確掌握一元二次方程兩根之和,兩個之積與系數之間的關系式解題的關鍵.若x1,x2為方程的兩個根,則x1,x2與系數的關系式:,.16、16000【解題分析】

用畢業生總人數乘以“綜合素質”等級為A的學生所占的比即可求得結果.【題目詳解】∵A,B,C,D,E五個等級在統計圖中的高之比為2:3:3:1:1,∴該市80000名九年級學生中“綜合素質”評價結果為“A”的學生約為80000×=16000,故答案為16000.【題目點撥】本題考查了條形統計圖的應用,讀懂統計圖,從統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據.三、解答題(共8題,共72分)17、(1)m=-2.(2)①判斷:PD=2PC.理由見解析;②-1≤n<0或n≤-3.【解題分析】

(1)利用代點法可以求出參數k,m;(2)①當n=-1時,即點P的坐標為(-1,2),即可求出點②根據①中的情況,可知n=-1或n=-3再結合圖像可以確定n的取值范圍;【題目詳解】解:(1)∵函數y=kx(x<0)的圖象G∴將點A(-1,6)代入y=∵直線y=mx-2與x軸交于點B(∴將點B(-1,0)代入y=mx-2(2)①判斷:PD=2PC.理由如下:當n=-1時,點P的坐標為(-1∴點C的坐標為(-2,∴PC=1,PD=2.∴PD=2PC.②由①可知當n=-1時PD=2PC所以由圖像可知,當直線y=-2n往下平移的時也符合題意,即0<-2n≤1,得-1≤n<0;當n=-3時,點P的坐標為(∴點C的坐標為(-4,∴PC=1,PD=2∴PD=2PC當-2n≥6時,即n≤-3,也符合題意,所以n的取值范圍為:-1≤n<0或n≤-3.【題目點撥】本題主要考查了反比例函數和一次函數,熟練求反比例函數和一次函數解析式的方法、坐標與線段長度的轉化和數形結合思想是解題關鍵.18、(2)y=x2﹣4x+3;(2)①2<x3<4,②m的值為或2.【解題分析】

(2)由直線y=﹣x+3分別與x軸、y交于點B、C求得點B、C的坐標,再代入y=x2+bx+c求得b、c的值,即可求得拋物線的解析式;(2)①先求得拋物線的頂點坐標為D(2,﹣2),當直線l2經過點D時求得m=﹣2;當直線l2經過點C時求得m=3,再由x2>x2>2,可得﹣2<y3<3,即可﹣2<﹣x3+3<3,所以2<x3<4;②分當直線l2在x軸的下方時,點Q在點P、N之間和當直線l2在x軸的上方時,點N在點P、Q之間兩種情況求m的值即可.【題目詳解】(2)在y=﹣x+3中,令x=2,則y=3;令y=2,則x=3;得B(3,2),C(2,3),將點B(3,2),C(2,3)的坐標代入y=x2+bx+c得:,解得∴y=x2﹣4x+3;(2)∵直線l2平行于x軸,∴y2=y2=y3=m,①如圖①,y=x2﹣4x+3=(x﹣2)2﹣2,∴頂點為D(2,﹣2),當直線l2經過點D時,m=﹣2;當直線l2經過點C時,m=3∵x2>x2>2,∴﹣2<y3<3,即﹣2<﹣x3+3<3,得2<x3<4,②如圖①,當直線l2在x軸的下方時,點Q在點P、N之間,若三個點P、Q、N中恰好有一點是其他兩點所連線段的中點,則得PQ=QN.∵x2>x2>2,∴x3﹣x2=x2﹣x2,即x3=2x2﹣x2,∵l2∥x軸,即PQ∥x軸,∴點P、Q關于拋物線的對稱軸l2對稱,又拋物線的對稱軸l2為x=2,∴2﹣x2=x2﹣2,即x2=4﹣x2,∴x3=3x2﹣4,將點Q(x2,y2)的坐標代入y=x2﹣4x+3得y2=x22﹣4x2+3,又y2=y3=﹣x3+3∴x22﹣4x2+3=﹣x3+3,∴x22﹣4x2=﹣(3x2﹣4)即x22﹣x2﹣4=2,解得x2=,(負值已舍去),∴m=()2﹣4×+3=如圖②,當直線l2在x軸的上方時,點N在點P、Q之間,若三個點P、Q、N中恰好有一點是其他兩點所連線段的中點,則得PN=NQ.由上可得點P、Q關于直線l2對稱,∴點N在拋物線的對稱軸l2:x=2,又點N在直線y=﹣x+3上,∴y3=﹣2+3=2,即m=2.故m的值為或2.【題目點撥】本題是二次函數綜合題,本題為二次函數的綜合應用,涉及待定系數法、函數圖象的交點、線段的中點及分類討論思想等知識.在(2)中注意待定系數法的應用;在(2)①注意利用數形結合思想;在(2)②注意分情況討論.本題考查知識點較多,綜合性較強,難度較大.19、(39+9)米.【解題分析】

過點E作EF⊥BC的延長線于F,EH⊥AB于點H,根據CE=20米,坡度為i=1:,分別求出EF、CF的長度,在Rt△AEH中求出AH,繼而可得樓房AB的高.【題目詳解】解:過點E作EF⊥BC的延長線于F,EH⊥AB于點H,在Rt△CEF中,∵=tan∠ECF,∴∠ECF=30°,∴EF=CE=10米,CF=10米,∴BH=EF=10米,HE=BF=BC+CF=(25+10)米,在Rt△AHE中,∵∠HAE=45°,∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.答:樓房AB的高為(35+10)米.【題目點撥】本題考查解直角三角形的應用-仰角俯角問題;坡度坡角問題,掌握概念正確計算是本題的解題關鍵.20、(1)y=,y=?x?1;(2)x<?2或0<x<1【解題分析】

(1)利用點A的坐標可求出反比例函數解析式,再把B(1,n)代入反比例函數解析式,即可求得n的值,于是得到一次函數的解析式;

(2)根據圖象和A,B兩點的坐標即可寫出一次函數的值大于反比例函數的值的x的取值范圍.【題目詳解】(1)∵A(?2,1)在反比例函數y=的圖象上,∴1=,解得m=?2.∴反比例函數解析式為y=,∵B(1,n)在反比例函數上,∴n=?2,∴B的坐標(1,?2),把A(?2,1),B(1,?2)代入y=kx+b得解得:∴一次函數的解析式為y=?x?1;(2)由圖像知:當x<?2或0<x<1時,一次函數的值大于反比例函數的值.【題目點撥】本題考查了反比例函數與一次函數的交點問題,屬于簡單題,熟悉函數圖像的性質是解題關鍵.21、(1);(2)【解題分析】

(1)利用概率公式直接計算即可;

(2)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與小明和小華都選擇去同一個地方游玩的情況,再利用概率公式即可求得答案.【題目詳解】(1)∵小明準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,∴小明選擇去白鹿原游玩的概率=;(2)畫樹狀圖分析如下:兩人選擇的方案共有16種等可能的結果,其中選擇同種方案有1種,所以小明和小華都選擇去秦嶺國家植物園游玩的概率=.【題目點撥】本題考查了列表法與樹狀圖法:利用列表法和樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數目m,求出概率.22、解:(1)AF與圓O的相切.理由為:如圖,連接OC,∵PC為圓O切線,∴CP⊥OC.∴∠OCP=90°.∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB.∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.∴AF為圓O的切線,即AF與⊙O的位置關系是相切.(2)∵△AOF≌△COF,∴∠AOF=∠COF.∵OA=OC,∴E為AC中點,即AE=CE=AC,OE⊥AC.∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根據勾股定理得:OF=1.∵S△AOF=?OA?AF=?OF?AE,∴AE=.∴AC=2AE=.【解題分析】試題分析:(1)連接OC,先證出∠3=∠2,由SAS證明△OAF≌△OCF,得對應角相等∠OAF=∠OCF,再根據切線的性質得出∠OCF=90°,證出∠OAF=90°,即可得出結論;(2)先由勾股定理求出OF,再由三角形的面積求出AE,根據垂徑定理得出AC=2AE.試題解析:(1)連接OC,如圖所示:∵AB是⊙O直徑,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OA,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,,∴△OAF≌△OCF(SAS),∴∠OAF=∠OCF,∵PC是⊙O的切線,∴∠OCF=90°,∴∠OAF=90°,∴FA⊥OA,∴AF是⊙O的切線;(2)∵⊙O的半徑為4,AF=3,∠OAF=90°,∴OF==1∵FA⊥OA,OF⊥AC,∴AC=2AE,△OAF的面積=AF?OA=OF?AE,∴3×4=1×AE,解得:AE=,∴AC=2AE=.考點:1.切線的判定與性質;2.勾股定理;3.相似三角形的判定與性質.23、(1)1000;(2)54°;(3)見解析;(4)32萬人【解題分析】

根據“每項人數=總人數×該項所占百分比”,“所占角度=360度×該項所占百分比”來列出式子,即可解出答案.【題目詳解】解:(1)400÷40%=1000(人)(2)360°×=54°,故答案為:1000人;

54°

;(3)1-10%-9%-26%-40%=15%15%×1000=150(人)(4)80×=52.8(萬人)答:總人數為52.8萬人.【題目點撥】本題考查獲取圖表信息的能力,能夠根據圖表找到必要條件是解題關鍵.24、(1)y=(x-)2-2;(2)△POE的面積為或;(3)點Q的坐標為(-,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論