廣西南寧市廣西大學附屬中學2024屆畢業升學考試模擬卷數學卷含解析_第1頁
廣西南寧市廣西大學附屬中學2024屆畢業升學考試模擬卷數學卷含解析_第2頁
廣西南寧市廣西大學附屬中學2024屆畢業升學考試模擬卷數學卷含解析_第3頁
廣西南寧市廣西大學附屬中學2024屆畢業升學考試模擬卷數學卷含解析_第4頁
廣西南寧市廣西大學附屬中學2024屆畢業升學考試模擬卷數學卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣西南寧市廣西大學附屬中學2024屆畢業升學考試模擬卷數學卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在△ABC中,D、E分別是邊AB、AC的中點,若BC=6,則DE的長為()A.2 B.3 C.4 D.62.在平面直角坐標系中,若點A(a,-b)在第一象限內,則點B(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.如圖,矩形ABCD中,AB=10,BC=5,點E,F,G,H分別在矩形ABCD各邊上,且AE=CG,BF=DH,則四邊形EFGH周長的最小值為()A.5 B.10 C.10 D.154.如圖,實數﹣3、x、3、y在數軸上的對應點分別為M、N、P、Q,這四個數中絕對值最小的數對應的點是()A.點M B.點N C.點P D.點Q5.如圖,⊙O中,弦BC與半徑OA相交于點D,連接AB,OC,若∠A=60°,∠ADC=85°,則∠C的度數是()A.25° B.27.5° C.30° D.35°6.如圖是根據我市某天七個整點時的氣溫繪制成的統計圖,則這七個整點時氣溫的中位數和平均數分別是()A.30,28B.26,26C.31,30D.26,227.如圖,由矩形和三角形組合而成的廣告牌緊貼在墻面上,重疊部分(陰影)的面積是4m2,廣告牌所占的面積是30m2(厚度忽略不計),除重疊部分外,矩形剩余部分的面積比三角形剩余部分的面積多2m2,設矩形面積是xm2,三角形面積是ym2,則根據題意,可列出二元一次方程組為()A. B. C. D.8.如下圖所示,該幾何體的俯視圖是()A. B. C. D.9.某學校舉行一場知識競賽活動,競賽共有4小題,每小題5分,答對給5分,答錯或不答給0分,在該學校隨機抽取若干同學參加比賽,成績被制成不完整的統計表如下.成績人數(頻數)百分比(頻率)050.2105150.42050.1根據表中已有的信息,下列結論正確的是()A.共有40名同學參加知識競賽B.抽到的同學參加知識競賽的平均成績為10分C.已知該校共有800名學生,若都參加競賽,得0分的估計有100人D.抽到同學參加知識競賽成績的中位數為15分10.下列關于x的方程中一定沒有實數根的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.(2016遼寧省沈陽市)如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點M是邊BC上一點,BM=3,點N是線段MC上的一個動點,連接DN,ME,DN與ME相交于點O.若△OMN是直角三角形,則DO的長是______.12.比較大小:___1.(填“>”、“<”或“=”)13.點A到⊙O的最小距離為1,最大距離為3,則⊙O的半徑長為_____.14.一艘貨輪以182km/h的速度在海面上沿正東方向航行,當行駛至A處時,發現它的東南方向有一燈塔B,貨輪繼續向東航行30分鐘后到達C處,發現燈塔B在它的南偏東15°方向,則此時貨輪與燈塔B的距離是________km.15.分解因式:=____16.如圖,點D是線段AB的中點,點C是線段AD的中點,若CD=1,則AB=________________.三、解答題(共8題,共72分)17.(8分)某學校要了解學生上學交通情況,選取七年級全體學生進行調查,根據調查結果,畫出扇形統計圖(如圖),圖中“公交車”對應的扇形圓心角為60°,“自行車”對應的扇形圓心角為120°,已知七年級乘公交車上學的人數為50人.(1)七年級學生中,騎自行車和乘公交車上學的學生人數哪個更多?多多少人?(2)如果全校有學生2400人,學校準備的600個自行車停車位是否足夠?18.(8分)已知反比例函數的圖象經過三個點A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>1.(1)當y1﹣y2=4時,求m的值;(2)如圖,過點B、C分別作x軸、y軸的垂線,兩垂線相交于點D,點P在x軸上,若三角形PBD的面積是8,請寫出點P坐標(不需要寫解答過程).19.(8分)拋物線y=x2+bx+c經過點A、B、C,已知A(﹣1,0),C(0,﹣3).求拋物線的解析式;如圖1,拋物線頂點為E,EF⊥x軸于F點,M(m,0)是x軸上一動點,N是線段EF上一點,若∠MNC=90°,請指出實數m的變化范圍,并說明理由.如圖2,將拋物線平移,使其頂點E與原點O重合,直線y=kx+2(k>0)與拋物線相交于點P、Q(點P在左邊),過點P作x軸平行線交拋物線于點H,當k發生改變時,請說明直線QH過定點,并求定點坐標.20.(8分)如圖,在平面直角坐標系中,直線與軸交于點,與軸交于點,與函數的圖象的一個交點為.(1)求,,的值;(2)將線段向右平移得到對應線段,當點落在函數的圖象上時,求線段掃過的面積.21.(8分)如圖,在△ABC中,點D,E分別在邊AB,AC上,∠AED=∠B,射線AG分別交線段DE,BC于點F,G,且.求證:△ADF∽△ACG;若,求的值.22.(10分)在數學實踐活動課上,老師帶領同學們到附近的濕地公園測量園內雕塑的高度.用測角儀在A處測得雕塑頂端點C′的仰角為30°,再往雕塑方向前進4米至B處,測得仰角為45°.問:該雕塑有多高?(測角儀高度忽略不計,結果不取近似值.)23.(12分)為弘揚中華傳統文化,黔南州近期舉辦了中小學生“國學經典大賽”.比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經.比賽形式分“單人組”和“雙人組”.(1)小麗參加“單人組”,她從中隨機抽取一個比賽項目,恰好抽中“三字經”的概率是多少?(2)小紅和小明組成一個小組參加“雙人組”比賽,比賽規則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次,則恰好小紅抽中“唐詩”且小明抽中“宋詞”的概率是多少?請用畫樹狀圖或列表的方法進行說明.24.我國古代數學著作《增刪算法統宗》記載“繩索量竿”問題:“一條竿子一條索,索比竿子長一托,折回索子卻量竿,卻比竿子短一托”其大意為:現有一根竿和一根繩索,用繩索去量竿,繩索比竿長5尺;如果將繩索對半折后再去量竿,就比竿短5尺.求繩索長和竿長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解題分析】

根據三角形的中位線等于第三邊的一半進行計算即可.【題目詳解】∵D、E分別是△ABC邊AB、AC的中點,∴DE是△ABC的中位線,∵BC=6,∴DE=12故選B.【題目點撥】本題考查了三角形的中位線定理,中位線是三角形中的一條重要線段,由于它的性質與線段的中點及平行線緊密相連,因此,它在幾何圖形的計算及證明中有著廣泛的應用.2、D【解題分析】

先根據第一象限內的點的坐標特征判斷出a、b的符號,進而判斷點B所在的象限即可.【題目詳解】∵點A(a,-b)在第一象限內,∴a>0,-b>0,∴b<0,∴點B((a,b)在第四象限,故選D.【題目點撥】本題考查了點的坐標,解決本題的關鍵是牢記平面直角坐標系中各個象限內點的符號特征:第一象限正正,第二象限負正,第三象限負負,第四象限正負.3、B【解題分析】作點E關于BC的對稱點E′,連接E′G交BC于點F,此時四邊形EFGH周長取最小值,過點G作GG′⊥AB于點G′,如圖所示,∵AE=CG,BE=BE′,∴E′G′=AB=10,∵GG′=AD=5,∴E′G=,∴C四邊形EFGH=2E′G=10,故選B.【題目點撥】本題考查了軸對稱-最短路徑問題,矩形的性質等,根據題意正確添加輔助線是解題的關鍵.4、D【解題分析】∵實數-3,x,3,y在數軸上的對應點分別為M、N、P、Q,

∴原點在點M與N之間,

∴這四個數中絕對值最大的數對應的點是點Q.

故選D.5、D【解題分析】分析:直接利用三角形外角的性質以及鄰補角的關系得出∠B以及∠ODC度數,再利用圓周角定理以及三角形內角和定理得出答案.詳解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故選D.點睛:此題主要考查了圓周角定理以及三角形內角和定理等知識,正確得出∠AOC度數是解題關鍵.6、B.【解題分析】試題分析:由圖可知,把7個數據從小到大排列為22,22,23,1,28,30,31,中位數是第4位數,第4位是1,所以中位數是1.平均數是(22×2+23+1+28+30+31)÷7=1,所以平均數是1.故選B.考點:中位數;加權平均數.7、A【解題分析】

根據題意找到等量關系:①矩形面積+三角形面積﹣陰影面積=30;②(矩形面積﹣陰影面積)﹣(三角形面積﹣陰影面積)=4,據此列出方程組.【題目詳解】依題意得:.故選A.【題目點撥】考查了由實際問題抽象出二元一次方程組.根據實際問題中的條件列方程組時,要注意抓住題目中的一些關鍵性詞語,找出等量關系,列出方程組.8、B【解題分析】

根據俯視圖是從上面看到的圖形解答即可.【題目詳解】從上面看是三個長方形,故B是該幾何體的俯視圖.故選B.【題目點撥】本題考查三視圖的知識,解決此類圖的關鍵是由三視圖得到相應的立體圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線.9、B【解題分析】

根據頻數÷頻率=總數可求出參加人數,根據分別求出5分、15分、0分的人數,即可求出平均分,根據0分的頻率即可求出800人中0分的人數,根據中位數的定義求出中位數,對選項進行判斷即可.【題目詳解】∵5÷0.1=50(名),有50名同學參加知識競賽,故選項A錯誤;∵成績5分、15分、0分的同學分別有:50×0.2=10(名),50×0.4=20(名),50﹣10﹣5﹣20﹣5=10(名)∴抽到的同學參加知識競賽的平均成績為:=10,故選項B正確;∵0分同學10人,其頻率為0.2,∴800名學生,得0分的估計有800×0.2=160(人),故選項C錯誤;∵第25、26名同學的成績為10分、15分,∴抽到同學參加知識競賽成績的中位數為12.5分,故選項D錯誤.故選:B.【題目點撥】本題考查利用頻率估算概率,平均數及中位數的定義,熟練掌握相關知識是解題關鍵.10、B【解題分析】

根據根的判別式的概念,求出△的正負即可解題.【題目詳解】解:A.x2-x-1=0,△=1+4=50,∴原方程有兩個不相等的實數根,B.,△=36-144=-1080,∴原方程沒有實數根,C.,,△=10,∴原方程有兩個不相等的實數根,D.,△=m2+80,∴原方程有兩個不相等的實數根,故選B.【題目點撥】本題考查了根的判別式,屬于簡單題,熟悉根的判別式的概念是解題關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、或.【解題分析】由圖可知,在△OMN中,∠OMN的度數是一個定值,且∠OMN不為直角.故當∠ONM=90°或∠MON=90°時,△OMN是直角三角形.因此,本題需要按以下兩種情況分別求解.(1)當∠ONM=90°時,則DN⊥BC.過點E作EF⊥BC,垂足為F.(如圖)∵在Rt△ABC中,∠A=90°,AB=AC,∴∠C=45°,∵BC=20,∴在Rt△ABC中,,∵DE是△ABC的中位線,∴,∴在Rt△CFE中,,.∵BM=3,BC=20,FC=5,∴MF=BC-BM-FC=20-3-5=12.∵EF=5,MF=12,∴在Rt△MFE中,,∵DE是△ABC的中位線,BC=20,∴,DE∥BC,∴∠DEM=∠EMF,即∠DEO=∠EMF,∴,∴在Rt△ODE中,.(2)當∠MON=90°時,則DN⊥ME.過點E作EF⊥BC,垂足為F.(如圖)∵EF=5,MF=12,∴在Rt△MFE中,,∴在Rt△MFE中,,∵∠DEO=∠EMF,∴,∵DE=10,∴在Rt△DOE中,.綜上所述,DO的長是或.故本題應填寫:或.點睛:在解決本題的過程中,難點在于對直角三角形中直角的分類討論;關鍵點是通過等角代換將一個在原直角三角形中不易求得的三角函數值轉換到一個容易求解的直角三角形中進行求解.另外,本題也可以用相似三角形的方法進行求解,不過利用銳角三角函數相對簡便.12、<.【解題分析】

根據算術平方根的定義即可求解.【題目詳解】解:∵=1,∴<=1,∴<1.故答案為<.【題目點撥】考查了算術平方根,非負數a的算術平方根a有雙重非負性:①被開方數a是非負數;②算術平方根a本身是非負數.13、1或2【解題分析】

分類討論:點在圓內,點在圓外,根據線段的和差,可得直徑,根據圓的性質,可得答案.【題目詳解】點在圓內,圓的直徑為1+3=4,圓的半徑為2;點在圓外,圓的直徑為3?1=2,圓的半徑為1,故答案為1或2.【題目點撥】本題考查點與圓的位置關系,關鍵是分類討論:點在圓內,點在圓外.14、1【解題分析】

作CE⊥AB于E,根據題意求出AC的長,根據正弦的定義求出CE,根據三角形的外角的性質求出∠B的度數,根據正弦的定義計算即可.【題目詳解】作CE⊥AB于E,12km/h×30分鐘=92km,∴AC=92km,∵∠CAB=45°,∴CE=AC?sin45°=9km,∵燈塔B在它的南偏東15°方向,∴∠NCB=75°,∠CAB=45°,∴∠B=30°,∴BC=CEsin∠B=故答案為:1.【題目點撥】本題考查的是解直角三角形的應用-方向角問題,正確標注方向角、熟記銳角三角函數的定義是解題的關鍵.15、x(y+2)(y-2)【解題分析】

原式提取x,再利用平方差公式分解即可.【題目詳解】原式=x(y2-4)=x(y+2)(y-2),故答案為x(y+2)(y-2).【題目點撥】此題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關鍵.16、4【解題分析】∵點C是線段AD的中點,若CD=1,∴AD=1×2=2,∵點D是線段AB的中點,∴AB=2×2=4,故答案為4.三、解答題(共8題,共72分)17、(1)騎自行車的人數多,多50人;(2)學校準備的600個自行車停車位不足夠,理由見解析【解題分析】分析:(1)根據乘公交車的人數除以乘公交車的人數所占的比例,可得調查的樣本容量,根據樣本容量乘以自行車所占的百分比,可得騎自行車的人數,根據有理數的減法,可得答案;(2)根據學校總人數乘以騎自行車所占的百分比,可得答案.詳解:(1)乘公交車所占的百分比=,調查的樣本容量50÷=300人,騎自行車的人數300×=100人,騎自行車的人數多,多100﹣50=50人;(2)全校騎自行車的人數2400×=800人,800>600,故學校準備的600個自行車停車位不足夠.點睛:本題考查了扇形統計圖,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.扇形統計圖直接反映部分占總體的百分比大小.18、(1)m=1;(2)點P坐標為(﹣2m,1)或(6m,1).【解題分析】

(1)先根據反比例函數的圖象經過點A(﹣4,﹣3),利用待定系數法求出反比例函數的解析式為y=12x,再由反比例函數圖象上點的坐標特征得出y1=122m=6m,y2=126m=2m,然后根據y1﹣y2(2)設BD與x軸交于點E.根據三角形PBD的面積是8列出方程12?4【題目詳解】解:(1)設反比例函數的解析式為y=kx∵反比例函數的圖象經過點A(﹣4,﹣3),∴k=﹣4×(﹣3)=12,∴反比例函數的解析式為y=12x∵反比例函數的圖象經過點B(2m,y1),C(6m,y2),∴y1=122m=6m,y2=126m∵y1﹣y2=4,∴6m﹣2∴m=1,經檢驗,m=1是原方程的解,故m的值是1;(2)設BD與x軸交于點E,∵點B(2m,6m),C(6m,2∴D(2m,2m),BD=6m﹣2m∵三角形PBD的面積是8,∴12∴12?4∴PE=4m,∵E(2m,1),點P在x軸上,∴點P坐標為(﹣2m,1)或(6m,1).【題目點撥】本題考查了待定系數法求反比例函數的解析式,反比例函數圖象上點的坐標特征以及三角形的面積,正確求出雙曲線的解析式是解題的關鍵.19、(1)y=x2﹣2x﹣3;(2);(3)當k發生改變時,直線QH過定點,定點坐標為(0,﹣2)【解題分析】

(1)把點A(﹣1,0),C(0,﹣3)代入拋物線表達式求得b,c,即可得出拋物線的解析式;(2)作CH⊥EF于H,設N的坐標為(1,n),證明Rt△NCH∽△MNF,可得m=n2+3n+1,因為﹣4≤n≤0,即可得出m的取值范圍;(3)設點P(x1,y1),Q(x2,y2),則點H(﹣x1,y1),設直線HQ表達式為y=ax+t,用待定系數法和韋達定理可求得a=x2﹣x1,t=﹣2,即可得出直線QH過定點(0,﹣2).【題目詳解】解:(1)∵拋物線y=x2+bx+c經過點A、C,把點A(﹣1,0),C(0,﹣3)代入,得:,解得,∴拋物線的解析式為y=x2﹣2x﹣3;(2)如圖,作CH⊥EF于H,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴拋物線的頂點坐標E(1,﹣4),設N的坐標為(1,n),﹣4≤n≤0∵∠MNC=90°,∴∠CNH+∠MNF=90°,又∵∠CNH+∠NCH=90°,∴∠NCH=∠MNF,又∵∠NHC=∠MFN=90°,∴Rt△NCH∽△MNF,∴,即解得:m=n2+3n+1=,∴當時,m最小值為;當n=﹣4時,m有最大值,m的最大值=16﹣12+1=1.∴m的取值范圍是.(3)設點P(x1,y1),Q(x2,y2),∵過點P作x軸平行線交拋物線于點H,∴H(﹣x1,y1),∵y=kx+2,y=x2,消去y得,x2﹣kx﹣2=0,x1+x2=k,x1x2=﹣2,設直線HQ表達式為y=ax+t,將點Q(x2,y2),H(﹣x1,y1)代入,得,∴y2﹣y1=a(x1+x2),即k(x2﹣x1)=ka,∴a=x2﹣x1,∵=(x2﹣x1)x2+t,∴t=﹣2,∴直線HQ表達式為y=(x2﹣x1)x﹣2,∴當k發生改變時,直線QH過定點,定點坐標為(0,﹣2).【題目點撥】本題主要考查的是二次函數的綜合應用,解答本題主要應用了配方法求二次函數的最值、待定系數法求一次函數的解析式、(2)問通過相似三角形建立m與n的函數關系式是解題的關鍵.20、(1)m=4,n=1,k=3.(2)3.【解題分析】

(1)把點,分別代入直線中即可求出m=4,再把代入直線即可求出n=1.把代入函數求出k即可;(2)由(1)可求出點B的坐標為(0,4),點B‘是由點B向右平移得到,故點B’的縱坐標為4,把它代入反比例函數解析式即可求出它的橫坐標,根據平移的知識可知四邊形AA’B’B是平行四邊形,再根據平行四邊形的面積計算公式計算即可.【題目詳解】解:(1)把點,分別代入直線中得:-4+m=0,m=4,∴直線解析式為.把代入得:n=-3+4=1.∴點C的坐標為(3,1)把(3,1)代入函數得:解得:k=3.∴m=4,n=1,k=3.(2)如圖,設點B的坐標為(0,y)則y=-0+4=4∴點B的坐標是(0,4)當y=4時,解得,∴點B’(,4)∵A’,B’是由A,B向右平移得到,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論