




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
安徽省合肥市2023-2024學年高一上數(shù)學期末調(diào)研試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,共60分)1.已知扇形的周長是6,圓心角為,則扇形的面積是()A.1 B.2C.3 D.42.若點在角的終邊上,則的值為A. B.C. D.3.下列與的終邊相同的角的集合中正確的是()A. B.C. D.4.若表示空間中兩條不重合的直線,表示空間中兩個不重合的平面,則下列命題中正確的是()A.若,則 B.若,則C.若,則 D.若,則5.已知,,,是球的球面上的四個點,平面,,,則該球的半徑為()A. B.C. D.6.已知集合0,,1,,則A. B.1,C.0,1, D.7.下列說法中正確的是()A.如果一條直線與一個平面平行,那么這條直線與平面內(nèi)的任意一條直線平行B.平面內(nèi)的三個頂點到平面的距離相等,則與平行C.,,則D.,,,則8.冪函數(shù)在上是減函數(shù).則實數(shù)的值為A.2或 B.C.2 D.或19.下列表示正確的是A.0∈N B.∈NC.–3∈N D.π∈Q10.函數(shù)的定義城為()A B.C. D.11.設,,若,則的最小值為()A. B.6C. D.12.不等式的解集是()A. B.C. D.二、填空題(本大題共4小題,共20分)13.已知函數(shù)是定義在上的奇函數(shù),則___________.14.在日常生活中,我們會看到如圖所示的情境,兩個人共提一個行李包.假設行李包所受重力為G,作用在行李包上的兩個拉力分別為,,且,與的夾角為.給出以下結(jié)論:①越大越費力,越小越省力;②的范圍為;③當時,;④當時,.其中正確結(jié)論的序號是______.15.函數(shù),在區(qū)間上增數(shù),則實數(shù)t的取值范圍是________.16.已知定義在上的函數(shù),滿足不等式,則的取值范圍是______三、解答題(本大題共6小題,共70分)17.已知函數(shù)為奇函數(shù).(1)求實數(shù)的值,并用定義證明是上的增函數(shù);(2)若關于的不等式的解集非空,求實數(shù)的取值范圍.18.已知,,且.(1)求實數(shù)a的值;(2)求.19.觀察以下等式:①②③④⑤(1)對①②③進行化簡求值,并猜想出④⑤式子的值;(2)根據(jù)上述各式的共同特點,寫出一條能反映一般規(guī)律的等式,并對等式的正確性作出證明20.已知直線與圓相交于點和點(1)求圓心所在的直線方程;(2)若圓心的半徑為1,求圓的方程21.如圖,四棱錐的底面是正方形,,點在棱上.(Ⅰ)求證:;(Ⅱ)當且為的中點時,求與平面所成的角的大小.22.函數(shù)的一段圖象如圖所示.(1)求函數(shù)的解析式;(2)將函數(shù)圖象向右平移個單位,得函數(shù)的圖象,求在的單調(diào)增區(qū)間
參考答案一、選擇題(本大題共12小題,共60分)1、B【解析】設扇形的半徑為r,弧長為l,先由周長求出半徑和弧長,即可求出扇形的面積.【詳解】設扇形的半徑為r,弧長為l,因為圓心角為,所以.因為扇形的周長是6,所以,解得:.所以扇形的面積是.故選:B2、A【解析】根據(jù)題意,確定角的終邊上點的坐標,再利用三角函數(shù)定義,即可求解,得到答案【詳解】由題意,點在角的終邊上,即,則,由三角函數(shù)的定義,可得故選A【點睛】本題主要考查了三角函數(shù)的定義的應用,其中解答中確定出角的終邊上點的坐標,利用三角函數(shù)的定義求解是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.3、C【解析】由任意角的定義判斷【詳解】,故與其終邊相同的角的集合為或角度制和弧度制不能混用,只有C符合題意故選:C4、C【解析】利用空間位置關系的判斷及性質(zhì)定理進行判斷或舉反例判斷【詳解】對于A,若n?平面α,顯然結(jié)論錯誤,故A錯誤;對于B,若m?α,n?β,α∥β,則m∥n或m,n異面,故B錯誤;對于C,若m⊥n,m⊥α,n⊥β,則α⊥β,根據(jù)面面垂直的判定定理進行判定,故C正確;對于D,若α⊥β,m?α,n?β,則m,n位置關系不能確定,故D錯誤故選C【點睛】本題考查了空間線面位置關系的性質(zhì)與判斷,屬于中檔題5、D【解析】由題意,補全圖形,得到一個長方體,則PD即為球O的直徑,根據(jù)條件,求出PD,即可得答案.【詳解】依題意,補全圖形,得到一個長方體,則三棱錐P-ABC的外接球即為此長方體的外接球,如圖所示:所以PD即為球O的直徑,因為平面,,,所以AD=BC=3,所以,所以半徑,故選:D【點睛】本題考查三棱錐外接球問題,對于有兩兩垂直的三條棱的三棱錐,可將其補形為長方體,即長方體的體對角線為外接球的直徑,可簡化計算,方便理解,屬基礎題.6、A【解析】直接利用交集的運算法則化簡求解即可【詳解】集合,,則,故選A【點睛】研究集合問題,一定要抓住元素,看元素應滿足的屬性.研究兩集合的關系時,關鍵是將兩集合的關系轉(zhuǎn)化為元素間的關系,本題實質(zhì)求滿足屬于集合且屬于集合的元素的集合.7、D【解析】根據(jù)線面關系,逐一判斷每個選項即可.【詳解】解:對于A選項,如果一條直線與一個平面平行,那么這條直線與平面內(nèi)無數(shù)條直線平行,而不是任意的直線平行,故錯誤;對于B選項,如圖,,,,分別為正方體中所在棱的中點,平面設為平面,易知正方體的三個頂點,,到平面的距離相等,但所在平面與相交,故錯誤;對于選項C,可能在平面內(nèi),故錯誤;對于選項D,正確.故選:D.8、B【解析】由題意利用冪函數(shù)的定義和性質(zhì)可得,由此解得的值【詳解】解:由于冪函數(shù)在時是減函數(shù),故有,解得,故選:【點睛】本題主要考查冪函數(shù)的定義和性質(zhì)應用,屬于基礎題9、A【解析】根據(jù)自然數(shù)集以及有理數(shù)集的含義判斷數(shù)與集合關系.【詳解】N表示自然數(shù)集,在A中,0∈N,故A正確;在B中,,故B錯誤;在C中,–3?N,故C錯誤;Q表示有理數(shù)集,在D中,π?Q,故D錯誤故選A【點睛】本題考查自然數(shù)集、有理數(shù)集的含義以及數(shù)與集合關系判斷,考查基本分析判斷能力,屬基礎題.10、C【解析】由對數(shù)函數(shù)的性質(zhì)以及根式的性質(zhì)列不等式組,即可求解.【詳解】由題意可得解得,所以原函數(shù)的定義域為,故選:C11、C【解析】由已知可得,將代數(shù)式與相乘,展開后利用基本不等式可求得所求代數(shù)式的最小值.【詳解】,,,由可得,所以,,當且僅當時,等號成立.因此,的最小值為.故選:C.【點睛】易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方.12、B【解析】利用一元二次不等式的解法即得.【詳解】由可得,,故不等式的解集是.故選:B.二、填空題(本大題共4小題,共20分)13、1【解析】依題意可得,,則,解得當時,,則所以為奇函數(shù),滿足條件,故14、①④.【解析】根據(jù)為定值,求出,再對題目中的命題分析、判斷正誤即可.【詳解】解:對于①,由為定值,所以,解得;由題意知時,單調(diào)遞減,所以單調(diào)遞增,即越大越費力,越小越省力;①正確.對于②,由題意知,的取值范圍是,所以②錯誤.對于③,當時,,所以,③錯誤.對于④,當時,,所以,④正確.綜上知,正確結(jié)論的序號是①④.故答案為:①④.【點睛】此題考查平面向量數(shù)量積的應用,考查分析問題的能力,屬于中檔題15、【解析】作出函數(shù)的圖象,數(shù)形結(jié)合可得結(jié)果.【詳解】解:函數(shù)的圖像如圖.由圖像可知要使函數(shù)是區(qū)間上的增函數(shù),則.故答案為【點睛】本題考查函數(shù)的單調(diào)性,考查函數(shù)的圖象的應用,考查數(shù)形結(jié)合思想,屬于簡單題目.16、【解析】觀察函數(shù)的解析式,推斷函數(shù)的性質(zhì),借助函數(shù)性質(zhì)解不等式【詳解】令,則,得,即函數(shù)的圖像關于中心對稱,且單調(diào)遞增,不等式可化為,即,得,解集為【點睛】利用函數(shù)解決不等式問題,關鍵是根據(jù)不等式構造適當?shù)暮瘮?shù),通過研究函數(shù)的單調(diào)性等性質(zhì)解決問題三、解答題(本大題共6小題,共70分)17、(1),證明見解析;(2).【解析】(1)由函數(shù)奇偶性的性質(zhì),求得,再利用函數(shù)的單調(diào)性的定義與判定方法,即可是上的增函數(shù);(2)由函數(shù)為奇函數(shù),且在上單調(diào)遞增,把不等式轉(zhuǎn)化為在上有解,結(jié)合二次函數(shù)的性質(zhì),即可求解.【詳解】(1)因為定義在上的奇函數(shù),可得,都有,令,可得,解得,所以,此時滿足,所以函數(shù)是奇函數(shù),所以.任取,且,則,因為,即,所以是上的增函數(shù).(2)因為為奇函數(shù),且的解集非空,可得的解集非空,又因為在上單調(diào)遞增,所以的解集非空,即在上有解,則滿足,解得,所以實數(shù)的取值范圍..18、(1)(2)【解析】(1)根據(jù)同角三角函數(shù)關系求解或,結(jié)合角所在象限求出,從而得到答案;(2)在第一問的基礎上,得到正弦和余弦,進而求出正切和余弦,利用誘導公式求出答案.【小問1詳解】由題意得:,解得:或因為,所以,,解得:,綜上:.【小問2詳解】由(1)得:,,故,,故19、(1)答案見解析;(2);證明見解析.【解析】(1)利用特殊角的三角函數(shù)值計算即得;(2)根據(jù)式子的特點可得等式,然后利用和差角公式及同角關系式化簡運算即得,【小問1詳解】猜想:【小問2詳解】三角恒等式為證明:=20、(1)x-y=0(2)【解析】本試題主要是考查了直線與圓的位置關系的運用,.以及圓的方程的求解(1)PQ中點M(,),,所以線段PQ的垂直平分線即為圓心C所在的直線的方程:(2)由條件設圓的方程為:,由圓過P,Q點得得到關系式求解得到.則或故圓的方程為21、(1)見解析(2)【解析】(Ⅰ)欲證平面AEC⊥平面PDB,根據(jù)面面垂直的判定定理可知在平面AEC內(nèi)一直線與平面PDB垂直,而根據(jù)題意可得AC⊥平面PDB;(Ⅱ)設AC∩BD=O,連接OE,根據(jù)線面所成角的定義可知∠AEO為AE與平面PDB所的角,在Rt△AOE中求出此角即可【詳解】(1)證明:∵底面ABCD是正方形∴AC⊥BD又PD⊥底面ABCDPD⊥AC所以AC⊥面PDB因此面AEC⊥面PDB(2)解:設AC與BD交于O點,連接EO則易得∠AEO為AE與面PDB所成的角∵E、O為中點∴EO=PD∴EO⊥AO∴在Rt△AEO中OE=PD=AB=AO∴∠AEO=45°即AE與面PDB所成角的大小為45°本題主要考查了直線與平面垂直的判定,以及直線與平面所成的角,考查空間想象能力、運算能力和推理論證能力,屬于基礎題22、(1);(2)【解析】(1)由函數(shù)的圖象的頂點坐標求出A,由周期求出ω,由五點法作圖求出φ的值,可得函數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 南昌航空大學《土力學含實驗》2023-2024學年第二學期期末試卷
- 呂梁學院《軟筆書法》2023-2024學年第二學期期末試卷
- 牡丹江師范學院《算法設計與分析Ⅲ》2023-2024學年第二學期期末試卷
- 南陽理工學院《IntroductiontoMicroprocessors》2023-2024學年第二學期期末試卷
- 上海工藝美術職業(yè)學院《醫(yī)學分子生物學實驗技術》2023-2024學年第一學期期末試卷
- 南充科技職業(yè)學院《生態(tài)學原理》2023-2024學年第二學期期末試卷
- 天津理工大學中環(huán)信息學院《中學化學教學方法與理論》2023-2024學年第二學期期末試卷
- 二零二五范文公園游樂場地租賃合同
- 護坡承包合同書范例
- 二零二五工程停工補償協(xié)議
- 公交車輛輕量化與節(jié)能技術
- 醫(yī)院納入定點后使用醫(yī)療保障基金的預測性分析報告
- 數(shù)據(jù)庫運維培訓
- 影視廣告賞析(哈爾濱師范大學)智慧樹知到期末考試答案2024年
- 培訓機構與家長溝通技巧
- 醫(yī)療機構執(zhí)業(yè)登記匯報
- 保安交通安全常識教育
- 2022年10月自考00883學前特殊兒童教育試題及答案含解析
- 【海南康養(yǎng)旅游現(xiàn)狀和對策探究11000字(論文)】
- 《浙江省建筑垃圾資源化利用技術導則》
- (高清版)DZT 0002-2017 含煤巖系鉆孔巖心描述
評論
0/150
提交評論