廣東汕頭市2024屆高二數學第一學期期末學業質量監測模擬試題含解析_第1頁
廣東汕頭市2024屆高二數學第一學期期末學業質量監測模擬試題含解析_第2頁
廣東汕頭市2024屆高二數學第一學期期末學業質量監測模擬試題含解析_第3頁
廣東汕頭市2024屆高二數學第一學期期末學業質量監測模擬試題含解析_第4頁
廣東汕頭市2024屆高二數學第一學期期末學業質量監測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東汕頭市2024屆高二數學第一學期期末學業質量監測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若直線與平行,則實數m等于()A.0 B.1C.4 D.0或42.已知橢圓C:的左,右焦點,過原點的直線l與橢圓C相交于M,N兩點.其中M在第一象限.,則橢圓C的離心率的取值范圍為()A. B.C. D.3.設m,n是兩條不同直線,,是兩個不同平面,則下列說法錯誤的是()A.若,,則; B.若,,則;C.若,,則; D.若,,則4.橢圓的焦點坐標為()A.和 B.和C.和 D.和5.為比較甲、乙兩地某月時的氣溫狀況,隨機選取該月中的天,將這天中時的氣溫數據(單位:℃)制成如圖所示的莖葉圖(十位數字為莖,個位數字為葉).考慮以下結論:①甲地該月時的平均氣溫低于乙地該月時的平均氣溫;②甲地該月時的平均氣溫高于乙地該月時的平均氣溫;③甲地該月時的氣溫的標準差小于乙地該月時的氣溫的標準差;④甲地該月時的氣溫的標準差大于乙地該月時的氣溫的標準差.其中根據莖葉圖能得到的統計結論的編號為()A.①③ B.①④C.②③ D.②④6.是數列,,,-17,中的第幾項()A第項 B.第項C.第項 D.第項7.若數列是等比數列,且,則()A.1 B.2C.4 D.88.已知等比數列的各項均為正數,公比,且滿足,則()A.8 B.4C.2 D.19.已知數列滿足且,則()A.是等差數列 B.是等比數列C.是等比數列 D.是等比數列10.在中,角,,所對的邊分別為,,,若,則的形狀為()A.銳角三角形 B.直角三角形C.鈍角三角形 D.不確定11.“”是“直線和直線垂直”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分又非必要條件12.拋擲兩枚質地均勻的硬幣,設事件“第一枚硬幣正面朝上”,事件“第二枚硬幣反面朝上”,則下列結論中正確的為()A.與互為對立事件 B.與互斥C與相等 D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數在區間上單調遞減,則實數的取值范圍是________;14.設,,,則動點P的軌跡方程為______,P到坐標原點的距離的最小值為______15.若直線l經過A(2,1),B(1,)兩點,則l的斜率取值范圍為_________________;其傾斜角的取值范圍為_________________.16.已知數列的前項和為,且滿足,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數列{an}的前n項和為Sn,數列{bn}滿足:點(n,bn)在曲線y=上,a1=b4,___,數列{}的前n項和為Tn從①S4=20,②S3=2a3,③3a3﹣a5=b2這三個條件中任選一個,補充到上面問題的橫線上并作答(1)求數列{an},{bn}的通項公式;(2)是否存在正整數k,使得Tk>,且bk>?若存在,求出滿足題意的k值;若不存在,請說明理由18.(12分)一款小游戲的規則如下:每盤游戲都需拋擲骰子三次,出現一次或兩次“6點”獲得15分,出現三次“6點”獲得120分,沒有出現“6點”則扣除12分(即獲得-12分)(Ⅰ)設每盤游戲中出現“6點”的次數為X,求X的分布列;(Ⅱ)玩兩盤游戲,求兩盤中至少有一盤獲得15分概率;(Ⅲ)玩過這款游戲的許多人發現,若干盤游戲后,與最初的分數相比,分數沒有增加反而減少了.請運用概率統計的相關知識分析解釋上述現象19.(12分)如圖甲,平面圖形中,,沿將折起,使點到點的位置,如圖乙,使.(1)求證:平面平面;(2)若點滿足,求點到直線的距離.20.(12分)已知命題p:實數x滿足;命題q:實數x滿足.若p是q的必要條件,求實數a的取值范圍21.(12分)如圖,在四棱錐中,平面,四邊形是菱形,,,是的中點(1)求證:;(2)已知二面角的余弦值為,求與平面所成角的正弦值22.(10分)已知橢圓的右焦點是橢圓上的一動點,且的最小值是1,當垂直長軸時,.(1)求橢圓的標準方程;(2)設直線與橢圓相切,且交圓于兩點,求面積的最大值,并求此時直線方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由兩條直線平行的充要條件即可求解.【詳解】解:因為直線與平行,所以,解得,故選:A.2、D【解析】由題設易知四邊形為矩形,可得,結合已知條件有即可求橢圓C的離心率的取值范圍.【詳解】由橢圓的對稱性知:,而,又,即四邊形為矩形,所以,則且M在第一象限,整理得,所以,又即,綜上,,整理得,所以.故選:D.【點睛】關鍵點點睛:由橢圓的對稱性及矩形性質可得,由已知條件得到,進而得到橢圓參數的齊次式求離心率范圍.3、C【解析】直接由直線平面的定理得到選項正確;對于選項,m,n可能平行、相交或異面,所以該選項錯誤;對于選項,與內一直線l,所以,因為l為內一直線,所以.所以該選項正確.【詳解】對于選項,若,,則,所以該選項正確;對于選項,若,,則,所以該選項正確;對于選項,若,,則m,n可能平行、相交或異面,所以該選項錯誤;對于選項,若,,則與內一直線l,所以,因為l為內一直線,所以.所以該選項正確.故選:C【點睛】本題主要考查空間直線平面位置關系判斷,意在考查學生對這些知識的理解掌握水平.4、D【解析】本題是焦點在x軸的橢圓,求出c,即可求得焦點坐標.【詳解】,可得焦點坐標為和.故選:D5、B【解析】根據莖葉圖數據求出平均數及標準差即可【詳解】由莖葉圖知甲地該月時的平均氣溫為,標準差為由莖葉圖知乙地該月時的平均氣溫為,標準差為則甲地該月14時的平均氣溫低于乙地該月14時的平均氣溫,故①正確,乙平均氣溫的標準差小于甲的標準差,故④正確,故正確的是①④,故選:B6、C【解析】利用等差數列的通項公式即可求解【詳解】設數列,,,,是首項為,公差d=-4的等差數列{},,令,得故選:C7、C【解析】根據等比數列的性質,由題中條件,求出,即可得出結果.【詳解】因為數列是等比數列,由,得,所以,因此.故選:C.8、A【解析】根據是等比數列,則通項為,然后根據條件可解出,進而求得【詳解】由為等比數列,不妨設首項為由,可得:又,則有:則故選:A9、D【解析】由,化簡得,結合等比數列、等差數列的定義可求解.【詳解】由,可得,所以,又由,,所以是首項為,公比為2的等比數列,所以,,,,所以不是等差數列;不等于常數,所以不是等比數列.故選:D.10、C【解析】由正弦定理得出,再由余弦定理得出,從而判斷為鈍角得出的形狀.【詳解】因為,所以,所以,所以的形狀為鈍角三角形.故選:C11、A【解析】根據直線垂直求出值即可得答案.【詳解】解:若直線和直線垂直,則,解得或,則“”是“直線和直線垂直”的充分非必要條件.故選:A.12、D【解析】利用互斥事件和對立事件的定義分析判斷即可【詳解】因為拋擲兩枚質地均勻的硬幣包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣正面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上,4種情況,其中事件包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上2種情況,事件包含第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上2種情況,所以與不互斥,也不對立,也不相等,,所以ABC錯誤,D正確,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】函數,又函數在區間上單調遞減∴在區間上恒成立即,解得:,當時,經檢驗適合題意故答案為【點睛】f(x)為增函數的充要條件是對任意的x∈(a,b)都有f′(x)≥0且在(a,b)內的任一非空子區間上f′(x)≠0.應注意此時式子中的等號不能省略,否則漏解14、①.②.l【解析】根據雙曲線的定義得到動點的軌跡方程,從而求出到坐標原點的距離的最小值;【詳解】解:因為,所以動點P的軌跡為以A,B為焦點,實軸長為2的雙曲線的下支.因為,,所以,,,所以動點P的軌跡方程為故P到坐標原點的距離的最小值為故答案為:;;15、①.②.【解析】根據直線l經過A(2,1),B(1,)兩點,利用斜率公式,結合二次函數性質求解;設其傾斜角為,,利用正切函數的性質求解.【詳解】因為直線l經過A(2,1),B(1,)兩點,所以l的斜率為,所以l的斜率取值范圍為,設其傾斜角為,,則,所以其傾斜角的取值范圍為,故答案為:,16、【解析】根據所給的通項公式,代入求得,并由代入求得,即可求得的值.【詳解】數列的前n項和,則,而,,∴,則,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)條件選擇見解析;an=2n,bn=25﹣n.(2)不存在,理由見解析.【解析】(1)把點(n,bn)代入曲線y=可得到bn=25﹣n,進而求出a1,設等差數列{an}的公差為d,選①S4=20,利用等差數列的前n項和公式可求出d,從而得到an;若選②S3=2a3,利用等差數列的前n項和公式可求出d,從而得到an;若選③3a3﹣a5=b2,利用等差數列的通項公式公式可求出d,從而得到an;(2)由(1)可知Sn==n(1+n),=,再利用裂項相消法求出Tn=1﹣,不等式無解,即不存在正整數k,使得Tk>,且bk>【小問1詳解】解:∵點(n,bn)在曲線y=上,∴=25﹣n,∴a1=b4=25﹣4=2,設等差數列{an}的公差為d,若選①S4=20,則S4==20,解得d=2,∴an=2+2(n﹣1)=2n;若選②S3=2a3,則S3=a1+a2+a3=2a3,∴a1+a2=a3,∴2+2+d=2+2d,解得d=2,∴an=2+2(n﹣1)=2n;若選③3a3﹣a5=b2,則3(a1+2d)﹣(a1+4d)=25﹣2=8,∴2a1+2d=8,即2×2+2d=8,∴d=2,∴an=2+2(n﹣1)=2n;【小問2詳解】解:由(1)可知Sn===n(1+n),∴==,∴Tn=(1﹣)+()+……+()=1﹣,假設存在正整數k,使得Tk>,且bk>,∴,即,此不等式無解,∴不存在正整數k,使得Tk>,且bk>18、(Ⅰ)分布列見解析(Ⅱ)(Ⅲ)見解析【解析】(Ⅰ)先得到可能的取值為,,,,根據每次拋擲骰子,出現“6點”的概率為,得到每種取值的概率,得到分布列;(Ⅱ)計算出每盤游戲沒有獲得15分的概率,從而得到兩盤中至少有一盤獲得15分的概率;(Ⅲ)設每盤游戲得分為,得到的分布列和數學期望,從而得到結論.【詳解】解:(Ⅰ)可能的取值為,,,.每次拋擲骰子,出現“6點”的概率為.,,,,所以X的分布列為:0123(Ⅱ)設每盤游戲沒有得到15分為事件,則.設“兩盤游戲中至少有一次獲得15分”為事件,則因此,玩兩盤游戲至少有一次獲得15分的概率為.(Ⅲ)設每盤游戲得分為.由(Ⅰ)知,的分布列為:Y-1215120P的數學期望為.這表明,獲得分數的期望為負因此,多次游戲之后分數減少的可能性更大【點睛】本題考查求隨機變量的分布列和數學期望,求互斥事件的概率,屬于中檔題.19、(1)證明見解析(2)【解析】(1)利用給定條件可得平面,再證即可證得平面推理作答.(2)由(1)得EA,EB,EG兩兩垂直,建立空間直角坐標系,先求出向量在向量上的投影的長,然后由勾股定理可得答案.【小問1詳解】因為,則,且,又,平面,因此,平面,即有平面,平面,則,而,則四邊形為等腰梯形,又,則有,于是有,則,即,,平面,因此,平面,而平面,所以平面平面.【小問2詳解】由(1)知,EA,EB,EG兩兩垂直,以點E為原點,射線EA,EB,EG分別為x,y,z軸非負半軸建立空間直角坐標系,如圖,因,四邊形是矩形,則,即,,,由,則則則向量在向量上的投影的長為又,所以點到直線的距離20、【解析】由題設得是為真時的子集,即,法一:討論、,根據集合的包含關系求參數范圍;法二:利用在恒成立,結合參變分離及指數函數的單調性求參數范圍.【詳解】由,得,則命題對應的集合為,設命題對應的集合為,是的必要條件,則,由,得,又,法一:若時,,則,顯然成立;若時,,則,可得,綜上:法二:在恒成立,即,∵在單調遞減,∴.21、(1)證明見解析;(2).【解析】(1)由菱形及線面垂直的性質可得、,再根據線面垂直的判定、性質即可證結論.(2)構建空間直角坐標系,設,結合已知確定相關點坐標,進而求面、面的法向量,結合已知二面角的余弦值求出參數t,再根據空間向量夾角的坐標表示求與平面所成角的正弦值【小問1詳解】由平面,平面,則,又是菱形,則,又,所以平面,平面所以E.【小問2詳解】分別以,,為,,軸正方向建立空間直角坐標系,設,則,由(1)知:平面的法向量為,令面的法向量為,則,令,可得,因為二面角的余弦值為,則,可得,則,設與平面所成的角為,又,,所以.22、(1);(2),.【解析】(1)由的最小值為1,得到,再由,結合,求得的值,即可求得橢圓的方程.(2)設切線的方程為,聯立方程組,根據直線與橢圓相切,求得,結合點到直線的距離公式和圓的弦長公式,求得的面積的表示,結合函數的單調性,即可求解.【詳解】(1)由題意,點橢

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論