




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省莆田市九中2023-2024學年高二數學第一學期期末經典試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.七巧板是中國古代勞動人民發(fā)明的一種傳統智力玩具,被譽為“東方魔板”,它是由五塊等腰直角三角形,一塊正方形和一塊平行四邊形共七塊板組成的.如圖是一個用七巧板拼成的正方形,若在此正方形中隨機地取一點,則該點恰好取自白色部分的概率為()A. B.C. D.2.如圖,在正方體中,點,分別是面對角線與的中點,若,,,則()A. B.C. D.3.已知直線和圓,則“”是“直線與圓相切”的().A.必要不充分條件 B.充分不必要條件C.充要條件 D.既不充分也不必要條件4.若數列滿足,,則該數列的前2021項的乘積是()A. B.C.2 D.15.已知直線經過拋物線的焦點,且與該拋物線交于,兩點,若滿足,則直線的方程為()A. B.C. D.6.甲、乙、丙、丁、戊共5名同學進行勞動技術比賽,決出第1名到第5名的名次.甲和乙去詢問成績,回答者對甲說:“很遺憾,你和乙都沒有得到冠軍.”對乙說:“你當然不會是最差的.”從這兩個回答分析,5人的名次排列方式共有()種A.54 B.72C.96 D.1207.1852年英國來華傳教士偉烈亞力將《孫子算經》中“物不知數”問題的解法傳至歐洲,西方人稱之為“中國剩余定理”.現有這樣一個問題:將1到200中被3整除余1且被4整除余2的數按從小到大的順序排成一列,構成數列,則=()A.130 B.132C.140 D.1448.在棱長為1的正方體中,點,分別是,的中點,點是棱上的點且滿足,則兩異面直線,所成角的余弦值是()A. B.C. D.9.已知等差數列的前項和為,若,則()A B.C. D.10.設是等比數列,則“對于任意的正整數n,都有”是“是嚴格遞增數列”()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.過點且斜率為的直線方程為()A. B.C. D.12.黃金矩形是寬()與長()的比值為黃金分割比的矩形,如圖所示,把黃金矩形分割成一個正方形和一個黃金矩形,再把矩形分割出正方形.在矩形內任取一點,則該點取自正方形內的概率是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則正整數___________.14.已知為拋物線上任意一點,為拋物線的焦點,為平面內一定點,則的最小值為__________.15.已知滿足約束條件,則的最小值為___________16.已知數列的通項公式為,,設是數列的前n項和,若對任意都成立,則實數的取值范圍是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列的前項和,且(1)證明:數列為等差數列;(2)設,記數列的前項和為,若,對任意恒成立,求實數的取值范圍18.(12分)已知函數.(1)當時,不等式恒成立,求實數的取值范圍;(2)解關于的不等式:.19.(12分)已知等差數列滿足:,.(1)求數列的通項公式;(2)若數列滿足:,,求數列的通項公式.20.(12分)在二項式展開式中,第3項和第4項的二項式系數比為.(1)求n的值及展開式中的常數項;(2)求展開式中系數最大的項是第幾項.21.(12分)如圖,在空間四邊形中,分別是的中點,分別是上的點,滿足.(1)求證:四點共面;(2)設與交于點,求證:三點共線.22.(10分)已知橢圓M:的離心率為,左頂點A到左焦點F的距離為1,橢圓M上一點B位于第一象限,點B與點C關于原點對稱,直線CF與橢圓M的另一交點為D(1)求橢圓M的標準方程;(2)設直線AD的斜率為,直線AB的斜率為.求證:為定值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設七巧板正方形邊長為4,求出陰影部分的面積,再利用幾何概型概率公式計算作答.【詳解】設七巧板正方形邊長為4,則大陰影等腰三角形底邊長為4,底邊上的高為2,可得小正方形對角線長為2,小正方形邊長為,小陰影等腰直角三角形腰長為,小白色等腰直角三角形底邊長為2,則左上角陰影等腰直角三角形腰長為2,因此,圖中陰影部分面積,而七巧板正方形面積,于是得七巧板中白色部分面積為,所以在此正方形中隨機地取一點,則該點恰好取自白色部分的概率為.故選:A2、D【解析】由空間向量運算法則得,利用向量的線性運算求出結果.【詳解】因為點,分別是面對角線與的中點,,,,所以故選:D.3、B【解析】首先求出直線與圓相切時的取值,再根據充分必要條件的定義判斷.【詳解】若直線與圓相切,則圓心到直線的距離,則,解得,所以“”是“直線與圓相切”的充分不必要條件.故選:B【點睛】本題考查直線與圓的位置關系,充分必要條件,重點考查計算,理解能力,屬于基礎題型.4、C【解析】先由數列滿足,,計算出前5項,可得,且,再利用周期性即可得到答案.【詳解】因為數列滿足,,所以,同理可得,…所以數列每四項重復出現,即,且,而,所以該數列的前2021項的乘積是.故選:C.5、C【解析】求出拋物線的焦點,設出直線方程,代入拋物線方程,運用韋達定理和向量坐標表示,解得,即可得出直線的方程.【詳解】解:拋物線的焦點,設直線為,則,整理得,則,.由可得,代入上式即可得,所以,整理得:.故選:C.【點睛】本題考查直線和拋物線的位置關系,主要考查韋達定理和向量共線的坐標表示,考查運算能力,屬于中檔題.6、A【解析】根據題意,分2種情況討論:①、甲是最后一名,則乙可以為第二、三、四名,剩下的三人安排在其他三個名次,②、甲不是最后一名,甲乙需要排在第二、三、四名,剩下的三人安排在其他三個名次,由加法原理計算可得答案【詳解】根據題意,甲乙都沒有得到冠軍,而乙不是最后一名,分2種情況討論:①甲是最后一名,則乙可以為第二、三、四名,即乙有3種情況,剩下的三人安排在其他三個名次,有種情況,此時有種名次排列情況;②甲不是最后一名,甲乙需要排在第二、三、四名,有種情況,剩下的三人安排在其他三個名次,有種情況,此時有種名次排列情況;則一共有種不同的名次情況,故選:A7、A【解析】分析數列的特點,可知其是等差數列,寫出其通項公式,進而求得結果,【詳解】被3整除余1且被4整除余2的數按從小到大的順序排成一列,這樣的數構成首項為10,公差為12的等差數列,所以,故,故選:A8、A【解析】建立空間直角坐標系,寫出點、、、和向量的、坐標,運用求異面直線余弦值的公式即可求出.【詳解】解:以為原點,分別以,,所在直線為,,軸建立如圖所示的空間直角坐標第,則,,,,故,,,故兩異面直線,所成角的余弦值是.故選:A.【點睛】本題考查求異面直線所成角的余弦值,屬于中檔題.9、B【解析】利用等差數列的性質可求得的值,再結合等差數列求和公式以及等差中項的性質可求得的值.【詳解】由等差數列的性質可得,則,故.故選:B.10、C【解析】根據嚴格遞增數列定義可判斷必要性,分類討論可判斷充分性.【詳解】若是嚴格遞增數列,顯然,所以“對于任意的正整數n,都有”是“是嚴格遞增數列”必要條件;對任意的正整數n都成立,所以中不可能同時含正項和負項,,即,或,即,當時,有,即,是嚴格遞增數列,當時,有,即,是嚴格遞增數列,所以“對于任意的正整數n,都有”是“是嚴格遞增數列”充分條件故選:C11、B【解析】利用點斜式可得出所求直線的方程.【詳解】由題意可知所求直線的方程為,即.故選:B.12、C【解析】設矩形的長,寬分別為,所以,把黃金矩形分割成一個正方形和一個黃金矩形,所以,設矩形的面積為,正方形的面積為,設在矩形內任取一點,則該點取自正方形內的概率是,則,故本題選C.【詳解】本題考查了幾何概型,考查了運算能力.二、填空題:本題共4小題,每小題5分,共20分。13、6【解析】根據組合數和排列數的運算即可求得答案.【詳解】由題意,,得.故答案為:6.14、3【解析】利用拋物線的定義,再結合圖形即求.【詳解】由題可得拋物線的準線為,設點在準線上的射影為,則根據拋物線的定義可知,∴要求取得最小值,即求取得最小,當三點共線時最小,為.故答案為:3.15、【解析】根據題意,作出可行域,進而根據幾何意義求解即可.【詳解】解:作出可行域如圖,將變形為,所以根據幾何意義,當直線過點時,有最小值,所以聯立方程得,所以的最小值為故答案為:16、【解析】化簡數列將問題轉化為不等式恒成立問題,再對n分奇數和偶數進行討論,分別求解出的取值范圍,最后綜合得出結果.【詳解】根據題意,,.①當n是奇數時,,即對任意正奇數n恒成立,當時,有最小值1,所以.②當n是正偶數時,,即,又,故對任意正偶數n都成立,又隨n增大而增大,當時,有最小值,即,綜合①②可知.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)利用可得答案;(2)利用錯位相減可得,轉化為對任意,恒成立,求出的最大值可得答案小問1詳解】當時,由,得或(舍去),由,得,①當時,,②由①-②,得,整理得,因為,所以所以是首項為1,公差為1的等差數列【小問2詳解】由(1)可得,所以,③,④由③-④,得,即,由得,所以,即,該式對任意恒成立,因此,所以的取值范圍是18、(1);(2)答案見解析.【解析】(1)由題設可得,進而可知在恒成立,即可求參數范圍.(2)題設不等式等價于,討論的大小并根據一元二次不等式的解法求解集即可.【小問1詳解】當時,得,即.由,則,∴,即,∴,即,∴實數的取值范圍是.【小問2詳解】由,即,即.①當時,不等式解集為;②當時,不等式的解集為;③當時,不等式的解集為.綜上,當時﹐不等式的解集為;當時,不等式的解集為﹔當時,不等式的解集為.19、(1);(2).【解析】(1)由題設條件,結合等差數列通項公式求基本量d,進而寫出通項公式.(2)由(1)得,應用累加法、錯位相減法及等比數列前n項和公式求的通項公式.【小問1詳解】令公差為d,由得:,解得.所以.【小問2詳解】,則,累加整理,得:,①,②②-①得:,又滿足上式,故.20、(1),常數項為(2)5【解析】(1)求出二項式的通項公式,求出第3項和第4項的二項式系數,再利用已知條件列方程求出的值,從而可求出常數項,(2)設展開式中系數最大的項是第項,則,從而可求出結果【小問1詳解】二項式展開式的通項公式為,因為第3項和第4項的二項式系數比為,所以,化簡得,解得,所以,令,得,所以常數項為【小問2詳解】設展開式中系數最大的項是第項,則,,解得,因為,所以,所以展開式中系數最大的項是第5項21、(1)證明見解析(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025國內銷售代理合同范文
- 2025企業(yè)宣傳音樂委約創(chuàng)作合同
- 2025二手客車買賣合同范本
- 機房維保標書
- 霍納法則,計算hashcode
- 應對市場波動的倉庫策略計劃
- 代發(fā)工資合同樣本
- 2025標準車輛買賣合同協議書
- 小班創(chuàng)意繪畫教學計劃
- 調動員工積極性的措施計劃
- 財務報表涉稅風險點
- 廣州市白云廣附實驗學校招生數學真題卷
- 施工組織設計-暗標
- 西方美術史知到章節(jié)答案智慧樹2023年齊魯師范學院
- 角膜地形圖與圓錐角膜
- 淺談幼兒園自主游戲中教師的有效指導策略 論文
- 【施工】電信入圍施工組織方案
- 2022《煤礦安全規(guī)程》
- 精選常熟市化工企業(yè)名單
- 江蘇省建筑工程造價估算指標
- 超詳細大鼠的解剖圖譜
評論
0/150
提交評論