




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北師版八年級下冊第四章因式分解因式分解
1.整式乘法有幾種形式?(1)單項式乘以單項式(2)單項式乘以多項式(3)多項式乘以多項式a(m+n)=
.(a+b)(m+n)=
.am+anam+an+bm+bn復習舊知(a+b)(a-b)=
.(a±b)2=
.2.乘法公式有哪些?(1)平方差公式(2)完全平方公式復習舊知數學中的游戲游戲規則:1.大家說出一個大于1的正整數.2.寫出它的立方減它本身的式子.如:3.不通過計算,說出這個式子能被哪些正整數整除.講授新課小明是這樣想的:993-99能被100整除嗎?你是怎樣想的?你知道每一步的根據嗎?993-99還能被哪些整數整除?想一想講授新課計算下列各式:(1)3x(x-1)=
;(2)m(a+b+c)=
;(3)(m+4)(m-4)=
;(4)(y-3)2=
.(5)a(a+1)(a-1)=
.根據左面的算式填空:3x2-3x=()()ma+mb+mc=()()m2-16=()()y2-6y+9=()2a3-a=()()()3x2-3xm2-16y2-6y+9ma+mb+mca3-ama+b+c3xx-1y-3m+4m-4aa+1a-1講授新課
由a(a+1)(a-1)得到a3-a的變形是什么運算?
由a3-a得到a(a+1)(a-1)的變形與它有什么不同?答:由a(a+1)(a-1)得到a3-a的變形是整式乘法,由a3-a得到a(a+1)(a-1)的變形是把一個多項式化成幾個整式的積的形式.你還能再舉一些類似的例子加以說明嗎?講授新課因式分解的定義:
把一個多項式化成幾個整式的積的形式,這種變形叫做因式分解.因式分解也可稱為分解因式.想一想:因式分解與整式乘法有什么聯系?講授新課善于辨析:因式分解與整式乘法有什么聯系?二者是互逆的恒等變形
因式分解講授新課判斷下列各式哪些是整式乘法?
哪些是因式分解?(1)x2-4y2=(x+2y)(x-2y)(2)2x(x-3y)=2x2-6xy(3)(5a-1)2=25a2-10a+1(4)x2+4x+4=(x+2)2(5)(a-3)(a+3)=a2-9因式分解整式乘法整式乘法因式分解整式乘法鞏固概念講授新課否是否否是否下列式子從左到右的變形是否為因式分解?為什么?鞏固概念講授新課(1)因式分解與整式的乘法是一種互逆關系;(2)因式分解的對象必須是多項式,結果要以積的形式表示;(3)分解后的每個因式必須是整式,次數都低于原來的多項式的次數;(4)必須分解到每個因式不能再分解為止.歸納講授新課x2-y2(3-5x)(3+5x)(x+1)2xy-y2x2+2x+1y(x-y)9-25x2(x-y)(x+y)例1把左右兩邊對應的式子連起來,并說明哪些變形是因式分解,哪些是整式乘法.講授新課.的值求時,例2當acabcba-===386.1,386.2,14.3解:ab-ac=a(b-c)
當a=3.14,b=2.386,c=1.386時,
原式=3.14×(2.386-1.386)=3.14講授新課例3、20082+2009能被2008整除嗎?
解:∵20082+2009=2008(2008+1)=2008×2009∴20082+2009能被2009整除講授新課例4假如用一根比地球赤道長10米的鐵絲將地球赤道圍起來,那么鐵絲與赤道之間均勻的間隙能有多大(赤道看成圓形,設地球的半徑為r,鐵絲圍成圓形的半徑為R)?講授新課R–r所以,鐵絲與赤道之間均勻的間隙為米.解:根據題意可得,講授新課例5若-x-m=(x+2)(x-3)則m=_______例6若-ax+b=能分解成(x-1)(x-4),則a=___,b=___強化訓練課堂小結對多項式分解因式與整式乘法是方向相反的兩種恒等變形.整式的乘法運算是把幾個整式的積變為多項式的形式,特
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 深圳市育才中學2025屆高三實驗班暑期第一次月考英語試題含解析
- 山東省淄博沂源縣聯考2025屆初三第一次適應性考試(一模)物理試題含解析
- 江蘇省南菁高中學2024-2025學年初三下學期期末學業質量監測語文試題理試題含解析
- 遼寧省丹東市五校協作體2025屆高三12月考-英語試題(含答案)
- 陜西省榆林市名校2024-2025學年中考模擬(8)語文試題含解析
- 西藏自治區日喀則市南木林縣2025年初三下期中考試英語試題理試題含答案
- 租賃合同大揭秘
- 機電設備交易合同樣本2025
- 與建筑公司簽訂的合同賠償協議
- 版中小學輔導機構合同協議
- 辦公室設備設施清單
- 異常子宮出血診斷與治療指南解讀課件
- 機器學習之聚類分析課件
- DB64-T 698-2021危險場所電氣防爆安全檢測技術規范-(高清可復制)
- 運動處方的制定課件
- 腦干聽覺誘發電位課件
- 輸液泵/微量注射泵使用技術操作考核評分標準
- 附件1數據業務品質管理指標體系
- 康佳led彩電電路原理圖
- 中考英語任務型閱讀解題技巧課件
- (西北)火力發電廠汽水管道支吊架設計手冊
評論
0/150
提交評論