湖北省襄陽市南漳縣2024屆數(shù)學九上期末復(fù)習檢測模擬試題含解析_第1頁
湖北省襄陽市南漳縣2024屆數(shù)學九上期末復(fù)習檢測模擬試題含解析_第2頁
湖北省襄陽市南漳縣2024屆數(shù)學九上期末復(fù)習檢測模擬試題含解析_第3頁
湖北省襄陽市南漳縣2024屆數(shù)學九上期末復(fù)習檢測模擬試題含解析_第4頁
湖北省襄陽市南漳縣2024屆數(shù)學九上期末復(fù)習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖北省襄陽市南漳縣2024屆數(shù)學九上期末復(fù)習檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.用配方法解方程時,原方程應(yīng)變形為()A. B. C. D.2.如圖,△ABC中,AB=AC=10,tanA=2,BE⊥AC于點E,D是線段BE上的一個動點,則的最小值是()A. B. C. D.103.下列關(guān)于三角形的內(nèi)心說法正確的是()A.內(nèi)心是三角形三條角平分線的交點B.內(nèi)心是三角形三邊中垂線的交點C.內(nèi)心到三角形三個頂點的距離相等D.鈍角三角形的內(nèi)心在三角形外4.張華同學的身高為米,某一時刻他在陽光下的影長為米,同時與他鄰近的一棵樹的影長為米,則這棵樹的高為()A.米 B.米 C.米 D.米5.計算得()A.1 B.﹣1 C. D.6.用配方法解一元二次方程x2﹣4x﹣5=0的過程中,配方正確的是()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=97.在反比例函數(shù)的圖象中,陰影部分的面積不等于4的是()A. B. C. D.8.在一個不透明的箱子中有3張紅卡和若干張綠卡,它們除了顏色外其他完全相同,通過多次抽卡試驗后發(fā)現(xiàn),抽到綠卡的概率穩(wěn)定在75%附近,則箱中卡的總張數(shù)可能是()A.1張 B.4張 C.9張 D.12張9.反比例函數(shù)y=圖象經(jīng)過A(1,2),B(n,﹣2)兩點,則n=()A.1 B.3 C.﹣1 D.﹣310.如果,那么()A. B. C. D.11.下列說法正確的是()A.某一事件發(fā)生的可能性非常大就是必然事件B.2020年1月27日杭州會下雪是隨機事件C.概率很小的事情不可能發(fā)生D.投擲一枚質(zhì)地均勻的硬幣1000次,正面朝上的次數(shù)一定是500次12.已知圓錐的底面半徑為2cm,母線長為5cm,則圓錐的側(cè)面積是()A.20cm2 B.20πcm2 C.10πcm2 D.5πcm2二、填空題(每題4分,共24分)13.如圖,從甲樓底部A處測得乙樓頂部C處的仰角是30°,從甲樓頂部B處測得乙樓底部D處的俯角是45°,已知甲樓的高AB是120m,則乙樓的高CD是_____m(結(jié)果保留根號)14.二次函數(shù)y=2x2﹣5kx﹣3的圖象經(jīng)過點M(﹣2,10),則k=_____.15.已知x=1是關(guān)于x的一元二次方程2x2﹣x+a=0的一個根,則a的值是_____.16.如圖,在中,,,,則的長為________.17.某盞路燈照射的空間可以看成如圖所示的圓錐,它的高AO=8米,母線AB=10米,則該圓錐的側(cè)面積是_____平方米(結(jié)果保留π).18.已知函數(shù),如果,那么___________.三、解答題(共78分)19.(8分)如圖是由9個小立方塊搭成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置小立方塊的個數(shù),請按要求畫出該幾何體的主視圖與左視圖.20.(8分)已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.(1)求b與a的關(guān)系式和拋物線的頂點D坐標(用a的代數(shù)式表示);(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關(guān)系式;(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.21.(8分)如圖,點A(1,m2)、點B(2,m﹣1)是函數(shù)y=(其中x>0)圖象上的兩點.(1)求點A、點B的坐標及函數(shù)的解析式;(2)連接OA、OB、AB,求△AOB的面積.22.(10分)如圖,四邊形ABCD中,AB∥CD,CD≠AB,點F在BC上,連DF與AB的延長線交于點G.(1)求證:CF?FG=DF?BF;(2)當點F是BC的中點時,過F作EF∥CD交AD于點E,若AB=12,EF=8,求CD的長.23.(10分)如圖,在平面直角坐標系中,直線交軸于點,交軸于點,點是射線上一動點(點不與點,重合),過點作垂直于軸,交直線于點,以直線為對稱軸,將翻折,點的對稱點落在軸上,以,為鄰邊作平行四邊形.設(shè)點,與重疊部分的面積為.(1)的長是__________,的長是___________(用含的式子表示);(2)求關(guān)于的函數(shù)關(guān)系式,并寫出自變量的取值范圍.24.(10分)已知函數(shù)y=mx1﹣(1m+1)x+1(m≠0),請判斷下列結(jié)論是否正確,并說明理由.(1)當m<0時,函數(shù)y=mx1﹣(1m+1)x+1在x>1時,y隨x的增大而減小;(1)當m>0時,函數(shù)y=mx1﹣(1m+1)x+1圖象截x軸上的線段長度小于1.25.(12分)⊙O為△ABC的外接圓,請僅用無刻度的直尺,根據(jù)下列條件分別在圖1,圖2中畫出一條弦,使這條弦將△ABC分成面積相等的兩部分(保留作圖痕跡,不寫作法).(1)如圖1,AC=BC;(2)如圖2,直線l與⊙O相切于點P,且l∥BC.26.如圖,胡同左右兩側(cè)是豎直的墻,一架米長的梯子斜靠在右側(cè)墻壁上,測得梯子與地面的夾角為,此時梯子頂端恰巧與墻壁頂端重合.因梯子阻礙交通,故將梯子底端向右移動一段距離到達處,此時測得梯子與地面的夾角為,問:胡同左側(cè)的通道拓寬了多少米(保留根號)?

參考答案一、選擇題(每題4分,共48分)1、A【分析】方程常數(shù)項移到右邊,兩邊加上1變形即可得到結(jié)果.【題目詳解】方程移項得:x2?2x=5,配方得:x2?2x+1=1,即(x?1)2=1.故選:A.【題目點撥】此題考查了解一元二次方程?配方法,熟練掌握完全平方公式是解本題的關(guān)鍵.2、B【解題分析】如圖,作DH⊥AB于H,CM⊥AB于M.由tanA==2,設(shè)AE=a,BE=2a,利用勾股定理構(gòu)建方程求出a,再證明DH=BD,推出CD+BD=CD+DH,由垂線段最短即可解決問題.【題目詳解】如圖,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠AEB=90°,∵tanA==2,設(shè)AE=a,BE=2a,則有:100=a2+4a2,∴a2=20,∴a=2或-2(舍棄),∴BE=2a=4,∵AB=AC,BE⊥AC,CM⊥AB,∴CM=BE=4(等腰三角形兩腰上的高相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴,∴DH=BD,∴CD+BD=CD+DH,∴CD+DH≥CM,∴CD+BD≥4,∴CD+BD的最小值為4.故選B.【題目點撥】本題考查解直角三角形,等腰三角形的性質(zhì),垂線段最短等知識,解題的關(guān)鍵是學會添加常用輔助線,用轉(zhuǎn)化的思想思考問題,屬于中考常考題型.3、A【分析】根據(jù)三角形內(nèi)心定義即可得到答案.【題目詳解】∵內(nèi)切圓的圓心是三角形三條角平分線的交點,叫做三角形的內(nèi)心,∴A正確,B、C、D均錯誤,故選:A.【題目點撥】此題考查三角形的內(nèi)心,熟記定義是解題的關(guān)鍵.4、A【分析】在同一時刻物高和影長成正比,即在同一時刻的兩個物體、影子、經(jīng)過物體頂部的太陽光線三者構(gòu)成的兩個直角三角形相似.【題目詳解】解:據(jù)相同時刻的物高與影長成比例,

設(shè)這棵樹的高度為xm,

則可列比例為,,解得,x=3.1.

故選:A.【題目點撥】本題主要考查同一時刻物高和影長成正比,考查利用所學知識解決實際問題的能力.5、A【分析】根據(jù)題意對原式變形后,利用同分母分式的減法法則計算,約分即可得到結(jié)果.【題目詳解】解:=1.故選:A.【題目點撥】本題考查分式的加減法,熟練掌握分式的加減法運算法則是解答本題的關(guān)鍵.6、D【分析】先移項,再在方程兩邊都加上一次項系數(shù)一半的平方,即可得出答案.【題目詳解】解:移項得:x2﹣4x=5,配方得:,(x﹣2)2=9,故選:D.【題目點撥】本題考查的知識點是用配方法解一元二次方程,掌握用配方法解一元二次方程的步驟是解此題的關(guān)鍵.7、B【分析】根據(jù)反比例函數(shù)中k的幾何意義,過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|解答即可.【題目詳解】解:A、圖形面積為|k|=1;B、陰影是梯形,面積為6;C、D面積均為兩個三角形面積之和,為2×(|k|)=1.故選B.【題目點撥】主要考查了反比例函數(shù)中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)常考查的一個知識點;這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義.圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關(guān)系即S=|k|.8、D【分析】設(shè)箱中卡的總張數(shù)可能是x張,則綠卡有(x-3)張,根據(jù)抽到綠卡的概率穩(wěn)定在75%附近,利用概率公式列方程求出x的值即可得答案.【題目詳解】設(shè)箱中卡的總張數(shù)可能是x張,∵箱子中有3張紅卡和若干張綠卡,∴綠卡有(x-3)張,∵抽到綠卡的概率穩(wěn)定在75%附近,∴,解得:x=12,∴箱中卡的總張數(shù)可能是12張,故選:D.【題目點撥】本題考查等可能情形下概率的計算,概率=所求情況數(shù)與總情況數(shù)的比;熟練掌握概率公式是解題關(guān)鍵.9、C【解題分析】根據(jù)反比例函數(shù)圖象上點的坐標特征得到:k=1×2=-2n,然后解方程即可.【題目詳解】解:∵反比例函數(shù)y=圖象經(jīng)過A(1,2),B(n,﹣2)兩點,∴k=1×2=﹣2n.解得n=﹣1.故選C.【題目點撥】本題考查反比例函數(shù)圖象上點的坐標特征.圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.10、B【題目詳解】根據(jù)二次根式的性質(zhì),由此可知2-a≥0,解得a≤2.故選B【題目點撥】此題主要考查了二次根式的性質(zhì),解題關(guān)鍵是明確被開方數(shù)的符號,然后根據(jù)性質(zhì)可求解.11、B【分析】不確定事件就是隨機事件,即可能發(fā)生也可能不發(fā)生的事件,發(fā)生的概率大于2并且小于1.【題目詳解】解:A.某一事件發(fā)生的可能性非常大也是是隨機事件,故不正確;B.2222年1月27日杭州會下雪是隨機事件,正確;C.概率很小的事情可能發(fā)生,故不正確;D、投擲一枚質(zhì)地均勻的硬幣1222次,正面朝上的次數(shù)大約是522次,故不正確;故選:B.【題目點撥】本題考查了概率的意義,概率的意義反映的只是這一事件發(fā)生的可能性的大小,概率取值范圍:2≤p≤1,其中必然發(fā)生的事件的概率P(A)=1;不可能發(fā)生事件的概率P(A)=2;隨機事件,發(fā)生的概率大于2并且小于1.事件發(fā)生的可能性越大,概率越接近與1,事件發(fā)生的可能性越小,概率越接近于2.12、C【解題分析】圓錐的側(cè)面積=底面周長×母線長÷2,把相應(yīng)數(shù)值代入,圓錐的側(cè)面積=2π×2×5÷2=10π.故答案為C二、填空題(每題4分,共24分)13、40【解題分析】利用等腰直角三角形的性質(zhì)得出AB=AD,再利用銳角三角函數(shù)關(guān)系即可得出答案.【題目詳解】解:由題意可得:∠BDA=45°,則AB=AD=120m,又∵∠CAD=30°,∴在Rt△ADC中,tan∠CDA=tan30°=,解得:CD=40(m),故答案為40.【題目點撥】此題主要考查了解直角三角形的應(yīng)用,正確得出tan∠CDA=tan30°=是解題關(guān)鍵.14、.【分析】點M(﹣2,10),代入二次函數(shù)y=2x2﹣5kx﹣3即可求出k的值.【題目詳解】把點M(﹣2,10),代入二次函數(shù)y=2x2﹣5kx﹣3得,8+10k﹣3=10,解得,k=,故答案為:.【題目點撥】本題考查求二次函數(shù)解析式的系數(shù),解題的關(guān)鍵是將圖象上的點坐標代入函數(shù)解析式.15、﹣1.【解題分析】將x=1代入方程得關(guān)于a的方程,解之可得.【題目詳解】解:將x=1代入方程得:2-1+a=0,解得:a=-1,故答案為:-1.【題目點撥】本題主要考查一元二次方程的解.16、【分析】過點作的垂線,則得到兩個直角三角形,根據(jù)勾股定理和正余弦公式,求的長.【題目詳解】過作于點,設(shè),則,因為,所以,則由勾股定理得,因為,所以,則.則.【題目點撥】本題考查勾股定理和正余弦公式的運用,要學會通過作輔助線得到特殊三角形,以便求解.17、【分析】根據(jù)勾股定理求得OB,再求得圓錐的底面周長即圓錐的側(cè)面弧長,根據(jù)扇形面積的計算方法S=lr,求得答案即可.【題目詳解】解:∵AO=8米,AB=10米,∴OB=6米,∴圓錐的底面周長=2×π×6=12π米,∴S扇形=lr=×12π×10=60π米2,故答案為60π.【題目點撥】本題考查圓錐的側(cè)面積,掌握扇形面積的計算方法S=lr是解題的關(guān)鍵.18、1【分析】把x=2代入函數(shù)關(guān)系式即可求得.【題目詳解】f(2)=3×22-2×2-1=1,

故答案為1.【題目點撥】此題考查二次函數(shù)圖象上點的坐標特征,解題關(guān)鍵在于掌握函數(shù)圖象上點的坐標適合解析式.三、解答題(共78分)19、見解析【分析】根據(jù)主視圖,左視圖的定義畫出圖形即可.【題目詳解】如圖,主視圖,左視圖如圖所示.【題目點撥】本題考查三視圖,解題的關(guān)鍵是理解三視圖的定義.20、(1)b=﹣2a,頂點D的坐標為(﹣,﹣);(2);(3)2≤t<.【解題分析】(1)把M點坐標代入拋物線解析式可得到b與a的關(guān)系,可用a表示出拋物線解析式,化為頂點式可求得其頂點D的坐標;(2)把點M(1,0)代入直線解析式可先求得m的值,聯(lián)立直線與拋物線解析式,消去y,可得到關(guān)于x的一元二次方程,可求得另一交點N的坐標,根據(jù)a<b,判斷a<0,確定D、M、N的位置,畫圖1,根據(jù)面積和可得△DMN的面積即可;(3)先根據(jù)a的值確定拋物線的解析式,畫出圖2,先聯(lián)立方程組可求得當GH與拋物線只有一個公共點時,t的值,再確定當線段一個端點在拋物線上時,t的值,可得:線段GH與拋物線有兩個不同的公共點時t的取值范圍.【題目詳解】解:(1)∵拋物線y=ax2+ax+b有一個公共點M(1,0),∴a+a+b=0,即b=-2a,∴y=ax2+ax+b=ax2+ax-2a=a(x+)2-,∴拋物線頂點D的坐標為(-,-);(2)∵直線y=2x+m經(jīng)過點M(1,0),∴0=2×1+m,解得m=-2,∴y=2x-2,則,得ax2+(a-2)x-2a+2=0,∴(x-1)(ax+2a-2)=0,解得x=1或x=-2,∴N點坐標為(-2,-6),∵a<b,即a<-2a,∴a<0,如圖1,設(shè)拋物線對稱軸交直線于點E,∵拋物線對稱軸為,∴E(-,-3),∵M(1,0),N(-2,-6),設(shè)△DMN的面積為S,∴S=S△DEN+S△DEM=|(-2)-1|?|--(-3)|=??a,(3)當a=-1時,拋物線的解析式為:y=-x2-x+2=-(x+)2+,由,-x2-x+2=-2x,解得:x1=2,x2=-1,∴G(-1,2),∵點G、H關(guān)于原點對稱,∴H(1,-2),設(shè)直線GH平移后的解析式為:y=-2x+t,-x2-x+2=-2x+t,x2-x-2+t=0,△=1-4(t-2)=0,t=,當點H平移后落在拋物線上時,坐標為(1,0),把(1,0)代入y=-2x+t,t=2,∴當線段GH與拋物線有兩個不同的公共點,t的取值范圍是2≤t<.【題目點撥】本題為二次函數(shù)的綜合應(yīng)用,涉及函數(shù)圖象的交點、二次函數(shù)的性質(zhì)、根的判別式、三角形的面積等知識.在(1)中由M的坐標得到b與a的關(guān)系是解題的關(guān)鍵,在(2)中聯(lián)立兩函數(shù)解析式,得到關(guān)于x的一元二次方程是解題的關(guān)鍵,在(3)中求得GH與拋物線一個交點和兩個交點的分界點是解題的關(guān)鍵,本題考查知識點較多,綜合性較強,難度較大.21、(1)A(1,2),B(2,1),函數(shù)的解析式為y=;(2)【分析】(1)根據(jù)反比例函數(shù)圖象上的點的坐標特征,得到k=m2=2(m﹣1),解得m的值,即可求得點A、點B的坐標及函數(shù)的解析式;(2)由反比例函數(shù)系數(shù)k的幾何意義,根據(jù)S△AOB=S△AOM+S梯形AMNB﹣S△BON=S梯形AMNB即可求解.【題目詳解】(1)點A(1,m2)、點B(2,m﹣1)是函數(shù)y=(其中x>0)圖象上的兩點,∴k=m2=2(m﹣1),解得:m=2,k=2,∴A(1,2),B(2,1),函數(shù)的解析式為:y=;(2)作AM⊥x軸于M,BN⊥x軸于N,∴S△AOM=S△BON=k,∴S△AOB=S△AOM+S梯形AMNB﹣S△BON=S梯形AMNB=(2+1)(2﹣1)=.【題目點撥】本題主要考查反比例函數(shù)的待定系數(shù)法和幾何圖形的綜合,掌握反比例函數(shù)比例系數(shù)k的幾何意義,是解題的關(guān)鍵.22、(1)證明見解析;(2)1.【分析】(1)證明△CDF∽△BGF可得出結(jié)論;(2)證明△CDF≌△BGF,可得出DF=GF,CD=BG,得出EF是△DAG的中位線,則2EF=AG=AB+BG,求出BG即可.【題目詳解】(1)證明:∵四邊形ABCD,AB∥CD,∴∠CDF=∠G,∠DCF=∠GBF,∴△CDF∽△BGF.∴,∴CF?FG=DF?BF;(2)解:由(1)△CDF∽△BGF,又∵F是BC的中點,BF=FC,∴△CDF≌△BGF(AAS),∴DF=GF,CD=BG,∵AB∥DC∥EF,F(xiàn)為BC中點,∴E為AD中點,∴EF是△DAG的中位線,∴2EF=AG=AB+BG.∴BG=2EF﹣AB=2×8﹣12=1,∴BG=1.【題目點撥】此題考查三角形相似的判定及性質(zhì)定理,三角形全等的判定及性質(zhì)定理,三角形的中位線定理,(2)利用(1)的相似得到三角形全等是解題的關(guān)鍵,由此利用中點E得到三角形的中位線,利用中位線的定理來解題.23、(1),;(2)【分析】(1)將y=0代入一次函數(shù)解析式中即可求出點A的坐標,從而求出結(jié)論;(2)先求出點B的坐標,然后根據(jù)銳角三角函數(shù)求出,,然后根據(jù)m的取值范圍分類討論,分別畫出對應(yīng)的圖形,利用相似三角形的判定及性質(zhì)和各個圖形的面積公式計算即可.【題目詳解】解:(1)將y=0代入中,得解得:x=4∴點A的坐標為(4,0)∴OA=4,AP=故答案為:;.(2)令,,即∵垂直于軸,∴∴∵當時,∴當時,如圖2,過點作于點,由題意知,∴四邊形是平行四邊形,∴∴,∴∴,,∵,∴∴∵,∴∴當時,如圖3,由②知,xE=2綜上【題目點撥】此題考查的是一次函數(shù)與幾何圖形的綜合大題,掌握求一次函數(shù)與坐標軸的交點坐標、銳角三角函數(shù)、圖形的面積公式和相似三角形的判定及性質(zhì)是解決此題的關(guān)鍵.24、(1)詳見解析;(1)詳見解析.【分析】(1)先確定拋物線的對稱軸為直線x=1+,利用二次函數(shù)的性質(zhì)得當m>1+時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論