




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
PAGE\PAGE\xMERGEFORMAT1高一數學下學期重點知識和公式總結高一數學下學期重點知識和公式總結(3篇)
高一數學下學期重點知識和公式總結篇1
一、三角平方關系:
的反向量為0AB-AC=CB.即“共同起點,指向被減”a=(x,y)b=(x",y")則a-b=(x-x",y-y").
4、數乘向量
實數λ和向量a的乘積是一個向量,記作λa,且λa=λa。當λ>0時,λa與a同方向;當λ<0時,λa與a反方向;當λ=0時,λa=0,方向任意。
當a=0時,對于任意實數λ,都有λa=0。
注:按定義知,如果λa=0,那么λ=0或a=0。
實數λ叫做向量a的系數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。
當λ>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的λ倍;當λ<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的λ倍。
數與向量的乘法滿足下面的運算律結合律:(λa)b=λ(ab)=(aλb)。
向量對于數的分配律(第一分配律):(λ+μ)a=λa+μa.數對于向量的分配律(第二分配律):λ(a+b)=λa+λb.
數乘向量的消去律:①如果實數λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。
3、向量的的數量積
定義:兩個非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。定義:兩個向量的數量積(內積、點積)是一個數量,記作ab。若a、b不共線,則ab=|a||b|cos〈a,b〉;若a、b共線,則ab=+-ab。向量的數量積的坐標表示:ab="+yy"。向量的數量積的運算率ab=ba(交換率);(a+b)c=ac+bc(分配率);向量的數量積的性質aa=|a|的平方。a⊥b〈=〉ab=0。|ab|≤|a||b|。
向量的數量積與實數運算的主要不同點
1、向量的數量積不滿足結合律,即:(ab)c≠a(bc);例如:(ab)^2≠a^2b^2。2、向量的數量積不滿足消去律,即:由ab=ac(a≠0),推不出b=c。3、|ab|≠|a||b|
4、由|a|=|b|,推不出a=b或a=-b。
高一數學下學期重點知識和公式總結篇2
第一章集合與函數概念
一、集合有關概念1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。2、集合的中元素的三個特性:1.元素的確定性;2.元素的互異性;3.元素的無序性.第一章集合與函數概念一、集合有關概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:
1.元素的確定性;2.元素的互異性;3.元素的無序性
說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
(3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。(4)集合元素的三個特性使集合本身具有了確定性和整體性。3、集合的表示:如{我校的籃球隊員},{太平洋大西洋印度洋北冰洋}
1.用拉丁字母表示集合:A={我校的籃球隊員}B={12345}2.集合的表示方法:列舉法與描述法。注意?。撼S脭导捌溆浄ǎ悍秦撜麛导醋匀粩导┯涀鳎篘
正整數集Nx或N+整數集Z有理數集Q實數集R關于“屬于”的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。①語言描述法:例:{不是直角三角形的三角形}
②數學式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}
4、集合的分類:
1.有限集含有有限個元素的集合2.無限集含有無限個元素的集合
3.空集不含任何元素的集合例:{x|x2=-5}二、集合間的基本關系1.“包含”關系子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之:集合A不包含于集合B或集合B不包含集合A記作AB或BA2.“相等”關系(5≥5,且5≤5,則5=5)實例:設A={x|x2-1=0}B={-11}“元素相同”結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B
①任何一個集合是它本身的子集。A?A
②真子集:如果A?B且A?B那就說集合A是集合B的真子集,記作AB(或BA)
③如果A?BB?C那么A?C④如果A?B同時B?A那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規定:空集是任何集合的子集,空集是任何非空集合的真子集。三、集合的運算
1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合叫做AB的交集.
記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做AB的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.
3、交集與并集的性質:A∩A=AA∩φ=φA∩B=B∩A,A∪A=AA∪φ=AA∪B=B∪A.4、全集與補集
(1)補集:設S是一個集合,A是S的一個子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)記作:CSA即CSA={x?x?S且x?A}
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。(3)性質:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U二、函數的有關概念
1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數.記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)|x∈A}叫做函數的值域.三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBB)=(1)/(cB)=(cc1)/2csin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)cosA)/((1+cosA))√((1-cosA)/((1+cosA))ccosA))c√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
B)/cosAcosBcc1)=n2+4+6+8+10+12+14++(2n)=n(n+1)
12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/613+23+33+43+53+63+n3=n2(n+1)2/4
1x2+2x3+3x4+4x5+5x6+6x7++n(n+1)=n(n+1)(n+2)/3
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑
余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角
弧長公式l=axra是圓心角的弧度數r>0扇形面積公式s=1/2xlxr
乘法與因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根與系數的關系x1+x2=-b/ax1xx2=c/a注:韋達定理判別式
b2-4ac=0注:方程有兩個相等的'實根b2-4ac>0注:方程有兩個不等的實根b2-4ac
1.2.2、函數的表示法
1、函數的三種表示方法:解析法、圖象法、列表法.1.3.1、單調性與最大(小)值1、注意函數單調性證明的一般格式:
1.3.2、奇偶性
1、一般地,如果對于函數的定義域內任意一個,都有,那么就稱函數為偶函數.偶函數圖象關于軸對稱.
2、一般地,如果對于函數的定義域內任意一個,都有,那么就稱函數為奇函數.奇函數圖象關于原點對稱.
高一數學下學期重點知識和公式總結篇3
本次考試共分三部分:選擇題、填空題和解答題。
第一大題選擇題共12小題,每小題4分,共48分。選擇題特別注重基礎,由于在平時學生的基礎掌握的不是很好,稍加變形學生就不會做。而且選擇題特別注重應用數形結合的思想,在平時雖然經常引導學生,方法雖然簡單但是學生不容易接受,所以選擇題得分不是很多,得分大約在20分。
第二大題填空題共6小題,每小題3分,共18分。填空題難度并不大,都是平時經常做的題目,難度相對于選擇來說,我認為較容易,可是學生一般來說還是比較喜歡做選擇題,填空題由于沒有參照,很多學生都選擇放棄。以至于簡單的題目也沒有得多少分,平均分也就2分。
第三大題解答題共34分,19題第一問主要考查了集合的并集,子集,難度不大,但是大部分學
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年一次性陰道擴張器項目投資價值分析報告
- 2025至2030年PCB聚酰亞胺膠項目投資價值分析報告
- 2025年鍍鉻三通項目可行性研究報告
- 2025年鋼支撐底板項目可行性研究報告
- 2025年連續封口墨輪打印機項目可行性研究報告
- 2025年軸流式水輪發電機項目可行性研究報告
- 2025年草莓果肉汁飲料項目可行性研究報告
- 提升消費活力推動內需增長的有效路徑與策略
- 綠色食品加工園區建設行動方案
- 2025新進廠員工安全培訓考試試題答案考試直接用
- 資產評估公司銷售培訓課件
- 物聯網通信技術課件
- 集成電路制造技術原理與工藝第3版田麗課后參考答案
- 種子學完整分
- 聽力篩查疾病演示課件
- 激光切割操作管理制度
- 保潔服務投標方案(技術標)
- 軟件工程師生涯人物訪談報告
- 教科版科學六年級下冊第二單元《生物的多樣性》測試卷
- JGJ103-2008 塑料門窗工程技術規程
- 邀請招標招標文件范本
評論
0/150
提交評論