




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版高一數學必背知識點總結分享3篇人教版高一數學必背學問點總結共享1
并集:以屬于A或屬于B的元素為元素的集合稱為A與B的并(集),記作A∪B(或B∪A),讀作“A并B〞(或“B并A〞),即A∪B={x|x∈A,或x∈B}交集:以屬于A且屬于B的元差集表示
素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作“A交B〞(或“B交A〞),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那么因為A和B中都有1,5,所以A∩B={1,5}。再來看看,他們兩個中含有1,2,3,5這些個元素,不管多少,反正不是你有,就是我有。那么說A∪B={1,2,3,5}。圖中的陰影部分就是A∩B。好玩的是;例如在1到105中不是3,5,7的整倍數的數有多少個。結果是3,5,7每項減集合
1再相乘。48個。對稱差集:設A,B為集合,A與B的對稱差集A?B定義為:A?B=(A-B)∪(B-A)例如:A={a,b,c},B={b,d},則A?B={a,c,d}對稱差運算的另一種定義是:A?B=(A∪B)-(A∩B)無限集:定義:集合里含有無限個元素的集合叫做無限集有限集:令N_是正整數的全體,且N_n={1,2,3,……,n},假如存在一個正整數n,使得集合A與N_n一一對應,那么A叫做有限集合。差:以屬于A而不屬于B的元素為元素的集合稱為A與B的差(集)。記作:AB={x│x∈A,x不屬于B}。注:空集包含于任何集合,但不能說“空集屬于任何集合〞.補集:是從差集中引出的概念,指屬于全集U不屬于集合A的元素組成的集合稱為集合A的補集,記作CuA,即CuA={x|x∈U,且x不屬于A}空集也被認為是有限集合。例如,全集U={1,2,3,4,5}而A={1,2,5}那么全集有而A中沒有的3,4就是CuA,是A的補集。CuA={3,4}。在信息技術當中,經常把CuA寫成~A。
人教版高一數學必背學問點總結共享2
一、集合有關概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:
1.元素確實定性;2.元素的互異性;3.元素的無序性
說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
(3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個特性使集合本身具有了確定性和整體性。
3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
1.用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
2.集合的表示方法:列舉法與描述法。
二、集合間的基本關系
1.“包含〞關系—子集
留意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等〞關系(5≥5,且5≤5,則5=5)
實例:設A={x|x2-1=0}B={-1,1}“元素相同〞
結論:對于兩個集合A與B,假如集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B
①任何一個集合是它本身的子集。AíA
②真子集:假如AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
③假如AíB,BíC,那么AíC
④假如AíB同時BíA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規定:空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的運算
1.交集的定義:一般地,由全部屬于A且屬于B的元素所組成的集合,叫做A,B的交集.
記作A∩B(讀作〞A交B〞),即A∩B={x|x∈A,且x∈B}.
2、并集的定義:一般地,由全部屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作〞A并B〞),即A∪B={x|x∈A,或x∈B}.
3、交集與并集的性質:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.
人教版高一數學必背學問點總結共享3
兩個平面的位置關系
(1)兩個平面相互平行的定義:空間兩平面沒有公共點
(2)兩個平面的位置關系:
兩個平面平行-----沒有公共點;兩個平面相交-----有一條公共直線。
a、平行
兩個平面平行的判定定理:假如一個平面內有兩條相交直線都平行于另一個平面,那么這兩個平面平行。
兩個平面平行的性質定理:假如兩個平行平面同時和第三個平面相交,那么交線平行。b、相交
二面角
(1)半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。
(2)二面角:從一條直線出發的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]
(3)二面角的棱:這一條直線叫做二面角的棱。
(4)二面角的面:這兩個半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
兩平面垂直
兩平面垂直的定義:兩平面相交,假如所成的角是直二面角,就說這兩個平面相互垂直。記為⊥
兩平面垂直的判定定理:假如一個
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CMES 37001-2022小型游樂設施制造單位能力條件要求
- T/CIE 186-2023業務研發安全運營一體化能力成熟度模型
- T/CI 387-2024裝配式橋梁下部結構施工技術規范
- T/CHTS 20035-2023噴射混凝土用晶膠改性聚合物
- T/CHTS 10097-2023雄安新區高速公路項目兩區建設技術指南
- T/CGCC 8-2017自熱方便菜肴制品
- T/CEPPEA 5025-2023供配電工程總承包管理規范
- T/CECS 10329-2023家用燃氣快速熱水器舒適性評價
- T/CECS 10187-2022無機復合聚苯不燃保溫板
- T/CCS 013-2023綜采工作面超前支架智能化控制系統技術規范
- 《抗休克藥物治療》課件
- 《2024 3572-T-424 重大活動食品安全保障規范 第 3 部分:供餐》知識培訓
- 2025年中考語文總復習:八年級下冊教材字詞打卡練
- 眼壓測量技術操作規范
- 智能化時代的創新創業教育知到課后答案智慧樹章節測試答案2025年春渭南職業技術學院
- 2024年數字化管理試題及答案
- YY頻道模板文檔
- 2024-2025學年湘教版初中地理七年級下冊課件 9.5 美國
- 《基于單片機的家用萬能遙控器設計5800字(論文)》
- 小學生軍人知識普及
- DB65-T 4863-2024 超設計使用年限壓力容器安全評估規則
評論
0/150
提交評論