云南省昆明市海口中學2022年高一數學第一學期期末監測模擬試題含解析_第1頁
云南省昆明市海口中學2022年高一數學第一學期期末監測模擬試題含解析_第2頁
云南省昆明市海口中學2022年高一數學第一學期期末監測模擬試題含解析_第3頁
云南省昆明市海口中學2022年高一數學第一學期期末監測模擬試題含解析_第4頁
云南省昆明市海口中學2022年高一數學第一學期期末監測模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若函數的定義域為R,則下列函數必為奇函數的是()A. B.C. D.2.函數零點所在的大致區間的A. B.C. D.3.函數的圖像與函數的圖像所有交點的橫坐標之和等于A2 B.4C.6 D.84.已知唯一的零點在區間、、內,那么下面命題錯誤的A.函數在或,內有零點B.函數在內無零點C.函數在內有零點D.函數在內不一定有零點5.已知集合,,則A. B.C. D.6.設函數若關于的方程有四個不同的解且則的取值范圍是A. B.C. D.7.已知M,N都是實數,則“”是“”的()條件A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要8.下列敘述正確的是()A.三角形的內角是第一象限角或第二象限角 B.鈍角是第二象限角C.第二象限角比第一象限角大 D.不相等的角終邊一定不同9.已知函數,則的()A.最小正周期,最大值為 B.最小正周期為,最大值為C.最小正周期為,最大值為 D.最小正周期為,最大值為10.已知圓C:x2+y2+2x=0與過點A(1,0)的直線l有公共點,則直線l斜率k的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,其中,則的值為______12.已知集合.(1)集合A的真子集的個數為___________;(2)若,則t的所有可能的取值構成的集合是___________.13.某種商品在第天的銷售價格(單位:元)為,第x天的銷售量(單位:件)為,則第14天該商品的銷售收入為________元,在這30天中,該商品日銷售收入的最大值為________元.14.函數的單調遞減區間為__15.在平面內將點繞原點按逆時針方向旋轉,得到點,則點的坐標為__________16.集合,用列舉法可以表示為_________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.(1)計算:,(為自然對數的底數);(2)已知,求的值.18.已知角終邊上有一點,且.(1)求的值,并求與的值;(2)化簡并求的值.19.已知函數常數證明在上是減函數,在上是增函數;當時,求的單調區間;對于中的函數和函數,若對任意,總存在,使得成立,求實數a的值20.某地政府為增加農民收人,根據當地地域特點,積極發展農產品加工業.經過市場調查,加工某農產品需投入固定成本3萬元,每加工噸該農產品,需另投入成本萬元,且已知加工后的該農產品每噸售價為10萬元,且加工后的該農產品能全部銷售完.(1)求加工后該農產品的利潤(萬元)與加工量(噸)的函數關系式;(2)求加工后的該農產品利潤的最大值.21.已知定義域為的函數是奇函數.(1)求實數的值;(2)判斷并用定義證明該函數在定義域上的單調性;(3)若方程在內有解,求實數的取值范圍

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據奇偶性的定義判斷可得答案.【詳解】,由得是偶函數,故A錯誤;,由得是偶函數,故B錯誤;,由得是奇函數,故C正確;,由得是偶函數,故D錯誤;故選:C.2、B【解析】函數是單調遞增函數,則只需時,函數在區間(a,b)上存在零點.【詳解】函數,x>0上單調遞增,,函數f(x)零點所在的大致區間是;故選B【點睛】本題考查利用函數零點存在性定義定理求解函數的零點的范圍,屬于基礎題;解題的關鍵是首先要判斷函數的單調性,再根據零點存在的條件:已知函數在(a,b)連續,若確定零點所在的區間.3、D【解析】由于函數與函數均關于點成中心對稱,結合圖形以點為中心兩函數共有個交點,則有,同理有,所以所有交點橫坐標之和為.故正確答案為D.考點:1.函數的對稱性;2.數形結合法的應用.4、C【解析】利用零點所在的區間之間的關系,將唯一的零點所在的區間確定出,則其他區間就不會存在零點,進行選項的正誤篩選【詳解】解:由題意,唯一的零點在區間、、內,可知該函數的唯一零點在區間內,在其他區間不會存在零點.故、選項正確,函數的零點可能在區間內,也可能在內,故項不一定正確,函數的零點可能在區間內,也可能在內,故函數在內不一定有零點,項正確故選:【點睛】本題考查函數零點的概念,考查函數零點的確定區間,考查命題正誤的判定.注意到命題說法的等價說法在判斷中的作用5、C【解析】先寫出A的補集,再根據交集運算求解即可.【詳解】因為,所以,故選C.【點睛】本題主要考查了集合的補集,交集運算,屬于容易題.6、A【解析】畫出函數的圖像,通過觀察的圖像與的交點,利用對稱性求得與的關系,根據對數函數的性質得到與的關系.再利用函數的單調性求得題目所求式子的取值范圍.【詳解】畫出函數的圖像如下圖所示,根據對稱性可知,和關于對稱,故.由于,故.令,解得,所以.,由于函數在區間為減函數,故,故選A.【點睛】本小題主要考查函數的對稱性,考查對數函數的性質,以及函數圖像的交點問題,還考查了利用函數的單調性求函數的值域的方法,屬于中檔題.7、B【解析】用定義法進行判斷.【詳解】充分性:取,滿足.但是無意義,所以充分性不滿足;必要性:當成立時,則有,所以.所以必要性滿足.故選:B8、B【解析】利用象限角、鈍角、終邊相同角的概念逐一判斷即可.【詳解】∵直角不屬于任何一個象限,故A不正確;鈍角屬于是第二象限角,故B正確;由于120°是第二象限角,390°是第一象限角,故C不正確;由于20°與360°+20°不相等,但終邊相同,故D不正確.故選B【點睛】本題考查象限角、象限界角、終邊相同的角的概念,綜合應用舉反例、排除等手段,選出正確的答案9、B【解析】利用輔助角公式化簡得到,求出最小正周期和最大值.【詳解】所以最小正周期為,最大值為2.故選:B10、B【解析】利用點到直線的距離公式和直線和圓的位置關系直接求解【詳解】根據題意得,圓心(﹣1,0),r=1,設直線方程為y﹣0=k(x﹣1),即kx﹣y﹣k=0∴圓心到直線的距離d1,解得k故選B【點睛】本題考查直線和圓的位置關系,點到直線的距離公式,屬于基礎題二、填空題:本大題共6小題,每小題5分,共30分。11、;【解析】因為,所以點睛:三角函數求值三種類型(1)給角求值:關鍵是正確選用公式,以便把非特殊角的三角函數轉化為特殊角的三角函數.(2)給值求值:關鍵是找出已知式與待求式之間的聯系及函數的差異.①一般可以適當變換已知式,求得另外函數式的值,以備應用;②變換待求式,便于將已知式求得的函數值代入,從而達到解題的目的.(3)給值求角:實質是轉化為“給值求值”,先求角的某一函數值,再求角的范圍,確定角.12、①.15②.【解析】(1)根據集合真子集的計算公式即可求解;(2)根據集合的包含關系即可求解.【詳解】解:(1)集合A的真子集的個數為個,(2)因為,又,所以t可能的取值構成的集合為,故答案為:15;.13、①.448②.600【解析】銷售價格與銷售量相乘即得收入,對分段函數,可分段求出最大值,然后比較【詳解】由題意可得(元),即第14天該商品的銷售收入為448元.銷售收入,,即,.當時,,故當時,y取最大值,,當時,易知,故當時,該商品日銷售收入最大,最大值為600元.故答案為:448;600.【點睛】本題考查分段函數模型的應用.根據所給函數模型列出函數解析式是基本方法14、【解析】由根式內部的代數式大于等于0,求得原函數的定義域,再求出內層函數的減區間,即可得到原函數的減區間【詳解】由,得或,令,該函數在上單調遞減,而y=是定義域內的增函數,∴函數的單調遞減區間為故答案為:15、【解析】由條件可得與x軸正向的夾角為,故與x軸正向的夾角為設點B的坐標為,則,,∴點的坐標為答案:16、##【解析】根據集合元素屬性特征進行求解即可.【詳解】因為,所以,可得,因為,所以,集合故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)2;(2).【解析】(1)由條件利用對數的運算性質求得要求式子的值.(2)由條件利用同角三角函數的基本關系平方即可求解【詳解】(1)原式.(2)因為,兩邊同時平方,得.【點睛】本題主要考查對數的運算性質,同角三角函數的基本關系,熟記公式是關鍵,屬于基礎題18、(1),,(2)【解析】(1)直接利用三角函數的定義依次計算得到答案.(2)根據誘導公式化簡得到原式等于,計算得到答案.【小問1詳解】,,解得.故,.【小問2詳解】.19、(1)見解析;(2)見解析;(3)【解析】利用定義證明即可;把看成整體,研究對勾函數的單調性以及利用復合函數的單調性的性質得到該函數的單調性;對于任意的,總存在,使得可轉化成的值域為的值域的子集,建立關系式,解之即可【詳解】證明::設,,且,,,,,當時,即,當時,即,當時,,即,此時函數為減函數,當時,,即,此時函數為增函數,故在上是減函數,在上是增函數;當時,,,設,則,,由可知在上是減函數,在上是增函數;,,即,,即在上是減函數,在上是增函數;由于減函數,故,又由(2)得由題意,的值域為的值域的子集,從而有,解得【點睛】本題主要考查定義法證明函數單調性,利用單調性求函數的值域,以及函數恒成立問題,同時考查了轉化的思想和運算求解的能力,是中檔題20、(1)(2)最大值6萬元【解析】(1)根據該農產品每噸售價為10萬元,需投入固定成本3萬元,每加工噸該農產品,需另投入成本萬元求解;(2)根據(1)的結論,分和,利用二次函數和基本不等式求解.【小問1詳解】解:當時,.當時,.故加工后該農產品的利潤(萬元)與加工量(噸)的函數關系式為:【小問2詳解】當時,,所以時,取得最大值5萬元;當時,因為,當且僅當時,等號成立,所以當時,取得最大值6萬元,因為,所以當時,取得最大值6萬元.21、(1)1;(2)見解析;(3)[-1,3).【解析】(1)根據解得,再利用奇偶性的定義驗證,即可求得實數的值;(2)先對分離常數后,判斷出為遞減函數,再利用單調性的定義作差證明即可;(3)先用函數的奇函數性質,再用減函數性質變形,然后分離參數可得,在內有解,令,只要.【詳解】(1)依題意得,,故,此時,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論