2023學(xué)年完整公開(kāi)課版垂徑定理_第1頁(yè)
2023學(xué)年完整公開(kāi)課版垂徑定理_第2頁(yè)
2023學(xué)年完整公開(kāi)課版垂徑定理_第3頁(yè)
2023學(xué)年完整公開(kāi)課版垂徑定理_第4頁(yè)
2023學(xué)年完整公開(kāi)課版垂徑定理_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

問(wèn)題:你知道趙州橋嗎?它是1400多年前我國(guó)隋代建造的石拱橋,是我國(guó)古代人民勤勞與智慧的結(jié)晶.它的主橋是圓弧形,它的跨度(弧所對(duì)的弦的長(zhǎng))為37m,拱高(弧的中點(diǎn)到弦的距離)為7.23m,你能求出趙洲橋主橋拱的半徑嗎?趙州橋主橋拱的半徑是多少?問(wèn)題情境·O可以發(fā)現(xiàn):圓是軸對(duì)稱圖形,任何一條直徑所在直線都是它的對(duì)稱軸.實(shí)踐探究把一個(gè)圓沿著它的任意一條直徑對(duì)折,重復(fù)幾次,你發(fā)現(xiàn)了什么?由此你能得到什么結(jié)論?活動(dòng)一在圓上畫(huà)出直徑CD,弦AB,使CD⊥AB,垂足為E.你能發(fā)現(xiàn)圖中有那些相等的線段和弧?為什么??思考·OABCDE活動(dòng)二線段:

AE=BE⌒⌒弧:AC=BC,AD=BD⌒⌒猜想:如何證明?·OABCDE已知:如圖,CD是⊙O的直徑,且CD⊥AB.證明:連接OA,OB,則OA=OB∵CD⊥AB∴AE=BE

∴AD=BD,⌒⌒求證:AE=BE且AD=BD,⌒⌒⌒⌒AC=BC⌒⌒AC=BC這種方法是證明一個(gè)圖形是軸對(duì)稱圖形的常用方法∴CD為AB的垂直平分線,A關(guān)于直線CD的對(duì)應(yīng)點(diǎn)為B.垂徑定理垂徑定理·OABCDE垂直于弦的直徑平分弦,并且平分弦所對(duì)的兩條弧.∵

CD是直徑,CD⊥AB,∴

AE=BE,⌒⌒AC

=BC,⌒⌒AD=BD.幾何語(yǔ)言:1,想一想:下列圖形是否具備垂徑定理的條件?如果不是,請(qǐng)說(shuō)明為什么?是不是,因?yàn)闆](méi)有垂直是不是,因?yàn)镃D沒(méi)有過(guò)圓心ABOCDEOABCABOEABDCOE活動(dòng)三2,如圖,在⊙O中,弦AB的長(zhǎng)為8cm,圓心O到AB的距離為3cm,求⊙O的半徑.·OABE解:答:半徑為5cm.在Rt△AOE中

OE⊥AB

總結(jié):

解決有關(guān)弦的問(wèn)題,經(jīng)常是過(guò)圓心作弦的弦心距,或作垂直于弦的直徑,連結(jié)半徑等輔助線,為應(yīng)用垂徑定理創(chuàng)造條件.歸納總結(jié)問(wèn)題:你知道趙州橋嗎?它是1400多年前我國(guó)隋代建造的石拱橋,是我國(guó)古代人民勤勞與智慧的結(jié)晶.它的主橋是圓弧形,它的跨度(弧所對(duì)的弦的長(zhǎng))為37m,拱高(弧的中點(diǎn)到弦的距離)為7.23m,你能求出趙洲橋主橋拱的半徑嗎?趙州橋主橋拱的半徑是多少?問(wèn)題情境ABOCD解:如圖,用AB表示主橋拱,設(shè)AB

所在圓的圓心為O,半徑為R.經(jīng)過(guò)圓心O作弦AB的垂線OC垂足為D,與弧AB交于點(diǎn)C,則D是AB的中點(diǎn),C是弧AB的中點(diǎn),CD就是拱高.∴AB=37m,CD=7.23m.解得R≈27.3(m)即主橋拱半徑約為27.3m.=18.52+(R-7.23)2

∴AD=AB=18.5m,OD=OC-CD=R-7.23.

在圓中有關(guān)弦長(zhǎng)a,半徑r,弦心距d(圓心到弦的距離),弓形高h(yuǎn)的計(jì)算題時(shí),常常通過(guò)連半徑或作弦心距構(gòu)造直角三角形,利用垂徑定理和勾股定理求解.方法歸納涉及垂徑定理時(shí)輔助線的添加方法弦a,弦心距d,弓形高h(yuǎn),半徑r之間有以下關(guān)系:弓形中重要數(shù)量關(guān)系A(chǔ)BCDOhrd

d+h=r

OABC·活動(dòng)四能否互換結(jié)論和條件呢?如何證明?探究:·OABCDE已知:如圖,CD是⊙O的直徑,AB為弦,且AE=BE.證明:連接OA,OB,則OA=OB∵AE=BE∴CD⊥AB∴AD=BD,⌒⌒求證:CD⊥AB,且AD=BD,⌒⌒⌒⌒AC=BC⌒⌒AC=BC活動(dòng)五垂徑定理推論

平分弦的直徑垂直于弦,并且平分弦所對(duì)的兩條弧。∴

CD⊥AB,∵CD是直徑,AE=BE⌒⌒AC=BC,⌒⌒AD

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論