國貿專業英文文獻翻譯_第1頁
國貿專業英文文獻翻譯_第2頁
國貿專業英文文獻翻譯_第3頁
國貿專業英文文獻翻譯_第4頁
國貿專業英文文獻翻譯_第5頁
已閱讀5頁,還剩43頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

OilpricefluctuationsandtheirimpactonthemacroeconomicvariablesofKuwait:acasestudyusingaVARmodelSUMMARYInthisstudy,avectorautoregressionmodel(VAR)andavectorerrorcorrectionmodel(VECM)wereestimatedtoexaminetheimpactofoilpricefluctuationsonsevenkeymacroeconomicvariablesfortheKuwaitieconomy.Quarterlydatafortheperiod1984-1998wereutilized.Theoreticallyandempiricallyspeaking,VECMissuperiortotheVARapproach.Also,theresultscorrespondingtotheVECMmodelareclosertocommonsense.However,theestimatedmodelsindicateahighdegreeofinterrelationbetweenmajormacroeconomicvariables.Theempiricalresultshighlightthecausalityrunningfromtheoilpricesandoilrevenues,togovernmentdevelopmentandcurrentexpenditureandthentowardsothervariables.Forthemostpart,theempiricalevidenceindicatesthatoilpriceshocksandhenceoilrevenueshaveanotableimpactongovernmentexpenditure,bothdevelopmentandcurrent.However,governmentdevelopmentexpenditurehasbeeninfluencedrelativelymore.TheresultsalsopointoutthesignificanceoftheCPIinexplaininganotablepartofthevariationsofbothtypesofgovernmentexpenditure.Ontheotherhand,thevariationsinvalueofimportsaremostlyaccountedforbyoilrevenuefluctuationsandthenbythefluctuationingovernmentdevelopmentexpenditures.Also,theresultsfromtheVECMapproachindicatethatasignificantpartofLM2varianceisexplainedbythevarianceinoilrevenue.Itreachesabout46percentinthe10thquarter,evenmorethanitsownvariations.KEYWORDS:vectorautoregression(VAR);oilfluctuation;Kuwait1.INTRODUCTIONThepost-1973effectsoftheoilboomontheeconomiesofAraboilproducingcountrieshavebeendiverse,thoughonbalance,manyofthosegovernmentsmightlookbackontheperiod1973–1986asamixedblessing.Incomeontheoilaccountcertainlyroserapidly,butsodidpriceinflation,wageratesandrelianceonforeignlabor.Aboveall,thegrowthoftheoilsectorasacontributortonationalincometendedtoreducetheroleofnonoilsectorstoinsignificanceinmostArabstatesoftheGulf.Thisphenomenonhasbeentermedintheliterature‘theDutchDisease’.Dramaticrisesinpercapitaincomewerethefruitsofrisingoilrevenuesalone,eveninthecaseofthelargermorediversifiedeconomiesoftheGulfsuchasIran(Al-Abbasi,1991).ThereisagreatdealoftheoreticalandempiricalliteraturescrutinizingvariousaspectsoftheDutchDiseaseeconomiessuchasCordonandNeary(1982),Hamilton(1983),NearyandvanWijnbergen(1986),Fardmanesh(1991),VanWijnbergen(1984),GelbandAssociates(1988)andTayloretal.(1986)tonameafew.Recently,severalempiricalstudieshavebeenpublishedonAraboilproducingcountries.Forinstance,Taher(1987)studiedtheimpactsofchangesintheworldoilpricesonthedifferentsectorsoftheSaudieconomy.Furthermore,Al-Mutawa(1991)andAl-MutawaandCuddington(1994)analysedtheeffectsofoilshocksandmacroeconomicpolicychangesfortheUAE.Theresultsshowedthat,inthecaseofUAE,anoil-quantityboomledtohigherwelfaregainsthananoil-priceboom.Moreover,anoil-priceorquantitybustalwaysledtolowereconomicgrowthandcreatedawelfareloss.Also,Al-Mutairi(1993)attemptedtoidentifythesourcesofoutputfluctuationsandthedynamicresponseoftheeconomytochangesinkeymacroeconomicvariablesforKuwait.Hisempiricalresultssuggestedthatforshorthorizonsofoneandtwoyears,shockstotheoilpriceaccountformorethan50percentofthevarianceofGDP.However,atlongerhorizonsofthreeyearsandmore,theseshocksareseentobeunimportantininducingGDPfluctuations,accountingonlyforlessthan10percentofthevariance.Shocksofreal-governmentexpenditurewerealsofoundtohaveasignificantroleincausingGDPfluctuations.Kuwaitisatypicalexampleofanoil-basedeconomy.Theoilsectorcontributesovertwo-thirdsofGDPandover90percentofexports.AlthoughKuwaittrieshardtolessenitsdependenceonoilthroughthedevelopmentofanon-oilsector,itssuccesshassofarbeen,atthebest,verymodest.Therealproblemisthatoilpricesandhenceoilrevenuesareexogenouslydetermined.AsamemberofOPEC,Kuwaithasnocontroloverthepriceofitscrudeoilandatleasttheoreticallyspeakingcannotexceeditsassignedproductionquota.TheobjectivesofthisstudyaretoinvestigatetheimpactsofoilpricefluctuationsonkeymacroeconomicvariablesoftheKuwaitieconomy,toexaminethedirectionofcausalityandtodeterminethesignificanceofsuchimpacts.Thiswillcertainlyenhanceourunderstandingofhowinternationaloilpricefluctuationsimpactkeymacroeconomicvariablesandthedynamicresponseoftheseeconomicvariables,includingpolicyvariablessuchasgovernmentexpenditureandmoneysupply.Inthisstudy,theanalysisiscarriedoutusingtwodifferentmodels,namely,thevectorautoregres-sionmodel(VAR)andthevectorerrorcorrectionmodel(VECM).TheVARtechniqueisappropriateinthiscasebecauseofitsabilitytocharacterizethedynamicstructureofthemodelaswellasitsabilitytoavoidimposingexcessiveidentifyingrestrictionsassociatedwithdifferenteconomictheories.TheuseofVARinmacroeconomicshasgeneratedmuchempiricalevidence,givingfundamentalsupporttomanyeconomictheories(seeBlanchardandWatson,1984,Bernanke,1986amongothers).Inthenextsection,abriefreviewoftheliteratureispresentedfollowedbytheVARmodelalongwiththedatautilized.Theempiricalresultsandtheirinterpretationaregiveninsectionfour,followedbytheconclusions.2.THEMODEL2.1.ThebackgroundofVARmethodologyTheVARsystemisbasedonempiricalregularitiesembeddedinthedata.TheVARmodelmaybeviewedasasystemofreducedformequationsinwhicheachoftheendogenousvariablesisregressedonitsownlaggedvaluesandthelaggedvaluesofallothervariablesinthesystem.AnnvariableVARsystemcanbewrittenasA(l)Yt=A+Ut(1)A(l)=l-A1l-A2l2-Amlm(2)whereYtisann×1vectorofmacroeconomicvariables,Aisann×1vectorofconstraints,andUtisann×1vectorofrandomvariables,eachofwhichisseriallyuncorrelatedwithconstantvarianceandzeromean.Equation(2)isann×nmatrixofnormalizedpolynomialsinthelagoperatorlwiththefirstentryofeachpolynomialonA'sbeingunity.Sincetheerrorterms(Ut)intheabovemodelareseriallyuncorrelated,anordinary-least-squares(OLS)techniquewouldbeappropriatetoestimatethismodel.However,beforeestimatingtheparametersofthemodelA(l)meaningfully,onemustlimitthelengthofthelaginthepolynomials.Iflisthelaglength,thenumberofcoefficientstobeestimatedisn(nl+c),wherecisthenumberofconstants.IntheVARmodelabove,thecurrentinnovations(Ut)areunanticipatedbutbecomepartoftheinformationsetinthenextperiod.Thisimpliesthattheanticipatedimpactofavariableiscapturedinthecoefficientsoflaggedpolynomialswhiletheresidualscaptureunforeseencontem-poraneousevents.Therefore,animportantfeatureoftheVARmethodologyistheuseoftheestimatedresiduals,calledVARinnovations,indynamicanalysis.Unlikeinconventionaleconomicmodelling,theseVARinnovationsaretreatedasaninherentpartofthesystem.Inordertoanalysetheimpactofunanticipatedpolicyshocksonthemacroeconomicvariablesinamoreconvenientandcomprehensiveway,Sims(1980)proposedtheuseofimpulseresponsefunctions(IRFs)andforecasterrorvariancedecompositions(FEVDs).IRFsandFEVDsareobtainedfromamovingaveragerepresentationoftheVARmodel[Equations(1)and(2)]asshownbelowYt=Constant+Ht(l)U(3)AndH(l)=I+Htl+H2l(4)WhereHisthecoefficientmatrixofthemovingaveragerepresentationwhichcanbeobtainedbysuccessivesubstitutioninEquations(1)and(2).TheelementsoftheHmatrixtracetheresponseovertimeofavariableiduetoaunitshockgiventovariablej.Infact,theseimpulseresponsefunctionswillprovidethemeanstoanalysethedynamicbehaviourofthemacroeconomicvariablesduetounanticipatedshocksintheexogenousvariables.Havingderivedthevariance-covariancematrixfromthemoving-averagerepresentation,theFEVDscanbeconstructed.FEVDsrepresentthedecompositionofforecasterrorvariancesandthereforegiveestimatesofthecontributionsofdistinctinnovationstothevariances.Thus,theycanbeinterpretedasshowingtheportionofvarianceinthepredictionforeachvariableinthesystemthatisattributabletoitsowninnovationsandtoshockstoothervariablesinthesystem.2.2.VectorerrorcorrectionmethodologyDickeyandFuller(1979)haveemphasizedthenecessityofanalysingthetime-seriespropertiesofthevariablesbeforetheirrelationshipcanbeestablished.Thisisnecessarybecauseifthevariablesinquestionarenonstationary,thentheestimatedequationswillyieldspuriousandmisleadingregressionresults.Ifthevariablesinarelationshiparestationarythenitisgenerallytruethatanylinearcombinationofthesevariablesissaidtobecointegrated.Johansen’stest(1991,1995)iscommonlyusedtotestforcointegrationbetweenmorethantwotimeseries.Italsoprovidesestimatesofthepossiblelong-termrelationships,i.e.theparametersoftherelationshipsthatensurecointegration.Inthisstudy,avectorerrorcorrectionmodel(VECM)wasalsoestimated.TheVECMisbasicallyaVARsystemthatbuildsonJohansen'stestforcointegrationandisusuallyreferredtointheliteraturesastherestrictedVAR.2.3.TheestimatedmodelanddataThefirststepinestimatingaVARmodelistomakeachoiceofthemacroeconomicvariablesthatareessentialfortheanalysis.ThevariablesconsistofoneexternalshockmeasuredbyinnovationsinthepriceofKuwaitiblendcrudeoil,threekeymacroeconomicvariables,oilrevenues,theconsumerpriceindex,(CPI)andthevalueofimportsandthreepolicyvariables,MoneySupplyM2,governmentcurrentexpenditureandgovernmentdevelopmentexpenditure.Thenotationsofthesevariablesareasfollow:OILP=OilPriceofKuwaitiBlendCrudeOILR=OilRevenue EXDEV=GovernmentDevelopmentExpenditureEXCON=GovernmentCurrentExpenditureCPI=ConsumerPriceIndexM2=MoneyDemand(M2Definition)IMPORTS=ValueofImportsofGoods&ServicesQuarterlydatafortheperiod1984:1-1998:4wereutilizedinthisstudy.ThedatafortheperiodoftheIraqioccupationandtheliberationofKuwaitwereremovedfromthetimeseriesforobviousreasons(1990-1991).AlldataarefromtheQuarterlyMonetaryStatisticsoftheCentralBankofKuwaitandOPEC’sMonthlyBulletin.Similartothepreviousstudies,allthevariablesareexpressedinlogarithmicform.Thiscanbepartiallyjustifiedbythefactthatlogarithmicformstendtoreducethescaleofthevariables,whichisadesirablequalitywhenanalysingthetime-seriespropertiesofthevariablesbeforetheirrelationshipcanbeestablished.Itisalsoausefultoolinprovidingestimatesofthepossiblelong-termrelationships,i.e.theparametersoftherelationshipsthatensureco-integration.AveryimportantpointthatshouldbementionedhereisthatthemajorshortcomingoftheVARapproachisitslackoftheoreticalsubstance(CoolyandLeRoy,1985;Leamer,1985).Inresponsetothiscriticism,BlanchardandWatson(1984)andBernanke(1986)developedprocedures,calledthestructuralvectorautoregression(SVAR)approach,whichcombinesthefeaturesofthetraditionalstructuralmodellingwiththoseoftheVARmethodology.ThemajoradvantageofusingSVARcomesfromthefactthatstandardVARdisturbancesaregenerallycharacterizedbycontemporaneouscorrelations.Inthepresenceofsuchcorrelations,theresponseofthesystem,indicatedbyIRFs,toaninnovationinoneofthevariablesisinfacttheresponsetoinnovationsinallthosevariablesthatarecontemporaneouslycorrelatedwithit.Similarly,theabilityofFEVDstoquantifytherelativecontributionsofspecificsourcesofvariationisconfoundedinthepresenceofthiscorrelation.However,instandardVARmethodologythiscontemporaneouscorrelationispurgedbytheCholeskyorthogonalizationprocedure.Forthemostpart,theCholeskyprocedureimplicitlyassumesrecursivityintheVARmodelasitisestimated.Althoughtheoreticalconsiderationsmayhelpindeterminingthisorderingandex-postsensitivityanalysismayfurtherhelpprovideinsightsregardingappropriateordering,itremainslargelyatthediscretionofthemodeller.Thefollowingorderingofequationswasadoptedinthisstudy;LOILP,LOILR,LEXEDEV,LEXCON,LCPI,LM2andLIMPORTS.Generallyspeaking,thisorderingreflectsthefactthatoilpriceshaveaninfluenceonoilrevenuesandthenonalltheothervariablesinthemodel.However,thebehaviorofoilpricesandtosomeextentoilrevenuearetheleastdeterminedbyothervariablesincludedinthemodel.ThisisquiteaplausibleassumptionbecausetheoilpricesandhenceoilrevenueswhichconsistofoilexportrevenuesandnetfactorincomefromabroadarelargelydeterminedbytheworldmarketconditionsratherthanwithintheKuwaitiEconomy.Similarly,thisorderingassumesthatthegovernmentexpenditureislargelydeterminedbythelevelofoilrevenueswhichagainisquiteaplausibleassumptionconsideringthedominantroleofthepublicsectorindrivingtheKuwaitieconomy.Itisalsosensibletoassumethatthevalueofimportsislargelydependentonthelevelofgovernmentexpenditure.Sincetheonlyvariablesincludedarethosesuggestedbyeconomictheory,andsincetheoreticalconsiderationsareimportantinselectingtheorderingusedhere,theSVARisnotfollowedinthisstudy.Nevertheless,theapproachutilizedherecanbeconsideredtobeinthespiritoftheSVARapproach.3.THEEMPIRICALRESULTSFirst,theVARtechniquerequiresstationarydata,thuseachseriesshouldbeexaminedforstationarity.TableIgivesthenonstationarytestforallthetime-series,usingtheconventionalDicky-Fullertest(DF),itsaugmentedversion(ADF)andPhillips-Parront-tests.Thesetestsincludeaconstantbutnotimetrend,asrecommendedbyDickeyandFuller(1979).First,thereportedt-statistics,whencomparedwiththecriticalvaluesobtainedbyEngleandYoo(1987),indicatethatalmostalltheseries,exceptCPI,M2andIMPORTS,arestationaryinthelevelsasshownbytheDF,ADFandPhillips-Perront-tests.Thesetestsarereappliedafterdifferencingallterms.Thet-statisticsonthelaggedfirst-differencetermsindicatethat,forallseriesthenullhypothesisisrejected,thatistosay,allseriesarefirstdifferencesstationary.However,intransformingavariable,ausualquestionarisesastowhetheroneshouldusethevariablesinthesysteminlevelsorindifferences.Theoverallguidelineisthatifthereareknumberofcointegratingvectoramongthevariablesusedinthesystem,thenVARcouldbemodelledwithkstationaryandn-kdifferencesoforiginalvariables.Butifallthevariablesinthesystemarenonstationary,usingaVARinlevelsisappropriate.Ontheotherhand,estimatingaVARinthelevelsinthecaseofcointegrationmayleadtotheomissionofimportantconstraints.Inthiscontext,Doanetal.(1984)notedthatdifferencingavariableis‘important'inthecaseofBox-JenkinsARIMAModelling.Doanetal.alsoobservedthatitisnotdesirabletodosoinVARmodels.Fuller(1976)hasalsoshownthatdifferencingthedatamaynotproduceanygainsofarasthe‘asymptoticefficiency’oftheVARisconcerned‘evenifitisappropriate’.Moreover,Fullerhasarguedthatdifferencingavariable‘throwsinformationaway'whileproducingnosignificantgain.Thus,followingDoanandFuller’sargument,thelevelratherthanthedifferencewasutilizedhere.Second,theestimationofaVARmodelrequirestheexplicitchoiceoflaglengthintheequationsofthemodel.FollowingJudgeetal.(1988)andMcMillin(1988),Akaike’sAICcriterionisusedtodeterminethelaglengthoftheVARmodel.Thechosenlaglengthisonethatminimizesthefollowing:AIC(n)=Indet∑+(2d2n)/Twheredisthenumberofvariablesinthemodel,Tthesamplesizeand∑nanestimateoftheresiduals’variance-covariancematrix∑nobtainedwithaVAR(n).Themaximumlaglengthissetatfivequarters,consideringthesamplesizeandnumberofvariablesinthemodel.Amaximumlagofgreaterthanfivequarterswouldreducethedegreesoffreedomforestimationunacceptably.TheresultofemployingthistechniqueissummarizedinTableII,whichshowsthecorrespondingAICvalues.ItcanbeseenthattheAICcriterionisminimizedfororder4.Thissuggeststhat,forthisstudy,theVARmodelshouldbeoforder4.ThenextstepistoestimatetheVAR.Theestimatesalongwiththeirt-valuesarereportedinTableIII.AlthoughtheestimatesofindividualcoefficientsinVARdonothaveastraightforwardinterpretation,aglanceatthetablegenerallyshowsthatmostofthet-valuesaresignificant(exceptfortheCPIequation)andalmostalloftheequationshavehighR-squares.Italsoconfirmstheassertionthatoilpricesareexogenouslydeterminedthanothervariablesincludedinthemodel.However,oilrevenueequationhasalargernumberofsignificantt-valuesthancurrentexpenditureandCPI.3.1.VariancedecompositionTableIVpresentsthevariancedecompositionforthe10-quartersforecasts.TableIVshowsthatinitiallythevariationsinallofthevariablesaretypicallyexplainedbythevariables’owntrends.Thatistosay,atthebeginning,thehistoricaltrendofeachvariableexplainsalargepartofitsownvariations.Forthemostpart,aftertenquarters,about60percentofthevarianceinoilpricesisexplainedbythevariableitselfwhichisindicativeofitsexogenousnature.Ontheotherhand,oilrevenueexplainedabout93percentofitsownvariationsatthefirstquarterandabout20percentatthe10thquarter.Moreover,variationinoilpricesaccountforabout45percentofthevariationinoilrevenuesstartingatthesecondquarterandthroughtothetenth.Thisshowsthatthecausalityisrunningfromoilpricestooilrevenues.Similarresultsarealsoevidentforgovernmentdevelopmentandcurrentexpenditures.Overatimeperiod,about15-17percentofthevarianceingovernmentexpenditures(developmentandcurrent)isaccountedforbythevariationsintheoilrevenues.Furthermore,lookingatthevariancedecompositioninthegovernmentexpenditures(developmentandcurrent)itisobservedthatfollowingtheirownvariationsandoilrevenues,theLCPIaccountforanotablepartoftheexpenditures’variance.TheCPIaccountsforonefifthofthecurrentexpenditurevariationsandabout15percentofthedevelopmentexpenditure.Thisisquiteaplausibleresultandveryapparentinthecaseofcurrentexpenditure.Ontheotherhand,itisworthnotingthattheothervariablethatalsopicksupasignificantpartofthevariationsingovernmentdevelopmentexpenditureisthevalueofimports.Itaccountsforabout16percent.LookingatthevariancedecompositionofM2,itisapparentthatanoticeablepartofitsvarianceisexplainedbythevarianceintheCPI(about33percent),evenmorethanitsownvariations.Also,oilpricesandoilrevenue,respectively,accountforabout23and13percentofitsvariations.Theseresultssuggestanimportantroleformoneysupply.Moreover,overthetimeperiod,theresultsshowthat25-45percentofthevarianceinthevalueofimportsisaccountedforbythevariationinoilrevenuesalone.Othervariablesincludedinthemodelthatexertsignificantinfluenceonthebehaviourofimportsarethetwotypesofgovernmentexpenditurebutinparticular,thedevelopmentexpenditure.3.2.ImpulseresponsesFigure1displaystheImpulseResponseFunctions,whichareessentiallythedynamicmultipliers.Sincetheprimaryinterestistoseetheresponseofmajormacroeconomicvariablestotheshocksgiventotheoilrevenuesandthentothegovernmentexpenditure,onlytentimeperiodsarereported.AninspectionofFigure1revealsthatinnovationintheoilpricesandhenceoilrevenuehasasimilareffectonmostofthevariablesinthemodel.Generally,mostofthesevariablesshowanincreaseinthefirstquarter.Thisincreasecontinuesinthesecondandthirdquarterandthenitgraduallytapersoffoverthesuccessivequarters.TheonlyexceptionsaretheCPIandthevalueofimportsandM2.ThismaybeattributabletotheshortcomingsinthedatasetusedtoestimatetheVAR.RecallthatLCPI,LM2andLIMPORTSwerefoundtobenon-stationaryinthelevel.3.3.EstimationofthevectorerrorcorrectionmodelSincemostofthevariablesincludedinthemodelpertaintostationarytimeseriesdataexceptLCPI,LM2andLIMPORTS,Johansen’stest(1991,1995)wasappliedtocheckforcointegratingvectors.Thetestindicatedthattherearefourcointegratingvectors.Therefore,avectorerrorcorrectionmodeliswarranted.AvectorerrorcorrectionmodelisaVARthatbuild-incointegration.Eachco-integratingequationaddstheparametersassociatedwiththeterminvolvinglevelsoftheserieswhichneedstobeaddedtoeachequationintheVAR.Thereisasequenceofnestedmodelsinthisframework.TheJohansentestprocedurecomputesthelikelihoodratioforeachaddedco-integratingequation.OnthebasisofJohansen’stest,aVectorerrorcorrectionmodel(VECM)wasestimated.Fourco-integratingequationswereestimatedusingthesamesevenvariablesthatwereusedintheVAR.However,sincetheresultsofestimatingtheVECMdonothaveadirectinterpretation,theyarenotreportedhere.3.4.VariancedecompositionThevariancedecompositionresultscorrespondingtotheestimatedVECMarepresentedinTableV.TheyarebasedonthesameorderingaswasusedintheVAR.ComparingtheseresultswiththeVARshowsthatwhilethequalitativenatureofmacroeconomiclinkagesremainsalmostthesame,theintensityofinteractionbetweenthevariablesissignificantlyhigherwhenco-integrationhasbeenaccountedfor.Forexample,lookingatthevariancedecompositionoftheoilrevenues,itshowsthatvariableslikegovernmentdevelopmentandcurrentexpenditureshaveasubstantiallylargersharewhencomparedwiththeVARresultswhichincreasedfrom14percenttoabout40percent.Similarly,theoilrevenuehaspickeduparelativelylargerproportionofthevariationinthegovernmentcurrentexpenditureaswellasthevalueofimports,especiallyduringthefirst4-6quarters.However,theresultsindicatethatvariationsinLCPI,LM2andLIMPORTS,after7-10quarters,aremainlyexplainedbychangesinoilrevenuealone.Inparticular,thevariancedecompositionofLM2indicatesthatasignificantpartofitsvarianceisexplainedbythevariationsinoilrevenues(about46percentafter10quarters),evenmorethanitsownvariations.Ontheotherhand,contrarytotheresultfromVAR,LCPIaccountsforonly7percent.Empiricallyspeaking,theVECMmodelshowsarelativelyhigherdegreeofstatisticalsignificance.Theoreticallyspeaking,thisisbecauseityieldsacloserinteractionbetweenmacroeconomicvariablesthanwhattheVARindicated.3.5.ImpulseresponsefunctionsFigure2displaystheimpulseresponsefunctionscorrespondingtotheVECMmodel.Figure2indicatesthatinnovationsintheoilpricesandoilrevenuehaveasimilarimpactonthevariablesincludedinthemodel.However,similartotheVAR,mostofthevariablesshowanincreaseforthefirstfewquartersthenitgraduallytapersoffoverthesuccessivequarterswiththeexceptionofCPI,valueofimportsandLM2.ComparingtheseIRFswiththosecorrespondingtotheVARversionrevealsthatittakesalittlelongerforthemultipliersintheVECMversiontoreachtheleveloftheVARversion.WhiletheygenerallyreachedtheirpeakintheVARversioninabout6-7quarters,ittookthem8-9quarterstoreachalmostthesamelevelintheVECMversion.4.CONCLUSIONSANDSOMEPOLICYIMPLICATIONSTheprimarygoalofthispaperwastoinvestigatehowmacroeconomicvariablesreacttofluctuationsintheworldoilprices.Therefore,twodifferentversionshavebeenestimated,namely,theVARandtheVECM.Whilethequalitativenatureofmacroeconomiclinkagesremainsalmostthesameinthetwomodels,theintensityofinteractionbetweenthevariablesissignificantlyhigherwhencointegrationhasbeenaccountedfor.Thus,quantitativelythetwomodelsgiveresultsthataresignificantlydifferentfromeachother.However,empirically,theVECMgivesbetterresultsbecauseityieldsacloserinteractionbetweenmacroeconomicvariablesthanbytheVARestimation.TheresultscorrespondingtotheVECMarealsoclosertocommonsense.Nevertheless,thetwoversionsestimatedindicatedanotabledegreeofinterrelationbetweenthemajormacroeconomicvariables.Theresultshavehighlightedthecausalityrunningfromoilpricestowardsoilrevenuesandthentowardsgovernmentexpenditureandothervariables.However,furtherassessmentoftherelationshipbetweenthesevariables,basedonorthogonalinnovations,leadustobelievethatoilpriceshocksdoimpactmacroeconomicvariablesinKuwaitandinparticular,viagovernmentdevelopmentandcurrentexpenditures.Theevaluationofthedecompositionofthevarianceofgovernmentexpendituressuggeststhatoilrevenuefluctuationsaccountforanotablepartespeciallyinthecaseofdevelopmentexpenditure.Thisresultisnotsurprisingandisactuallyconsistentwithwhatisexpectedinacountryinwhichthegovernmentisthesoleownerofthemainnationalincomesource,theoilandgasindustry.Thus,governmentexpenditurebecomesthemajordeterminantofthelevelofeconomicactivityandthemechanismbywhichthegovernmentcaneffectthecircularflowofincomewithintheeconomy.Whatissurprising,however,isthatonewouldexpecttheimpactofoilshockstobemuchstrongerandinparticular,inthecaseofcurrentgovernmentexpenditure.However,thismaybeexplainedbythefactthatoverthelastthreedecades,thegovernmenthasaccumulatedcapitalreserve(surplus)whichisregularlyusedtofinancecurrentgovernmentcommitments,especiallyintimesoflowoilrevenue

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論