




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省蘇州市吳江區青云中學2023年初三下學期第五次月考(一模)數學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若二次函數y=ax2+bx+c的x與y的部分對應值如下表:x﹣2﹣1012y830﹣10則拋物線的頂點坐標是()A.(﹣1,3) B.(0,0) C.(1,﹣1) D.(2,0)2.如圖,在矩形AOBC中,O為坐標原點,OA、OB分別在x軸、y軸上,點B的坐標為(0,3),∠ABO=30°,將△ABC沿AB所在直線對折后,點C落在點D處,則點D的坐標為()A.(,) B.(2,) C.(,) D.(,3﹣)3.一、單選題小明和小張兩人練習電腦打字,小明每分鐘比小張少打6個字,小明打120個字所用的時間和小張打180個字所用的時間相等.設小明打字速度為x個/分鐘,則列方程正確的是()A. B. C. D.4.如圖,在△ABC中,DE∥BC,若,則等于()A. B. C. D.5.如圖,將△ABC繞點C順時針旋轉,使點B落在AB邊上點B′處,此時,點A的對應點A′恰好落在BC邊的延長線上,下列結論錯誤的是()A.∠BCB′=∠ACA′ B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′6.某運動器材的形狀如圖所示,以箭頭所指的方向為左視方向,則它的主視圖可以是()A.B.C.D.7.如圖是我市4月1日至7日一周內“日平均氣溫變化統計圖”,在這組數據中,眾數和中位數分別是()A.13;13 B.14;10 C.14;13 D.13;148.某共享單車前a公里1元,超過a公里的,每公里2元,若要使使用該共享單車50%的人只花1元錢,a應該要取什么數()A.平均數B.中位數C.眾數D.方差9.在直角坐標平面內,已知點M(4,3),以M為圓心,r為半徑的圓與x軸相交,與y軸相離,那么r的取值范圍為()A. B. C. D.10.在某校“我的中國夢”演講比賽中,有9名學生參加決賽,他們決賽的最終成績各不相同.其中的一名學生想要知道自己能否進入前5名,不僅要了解自己的成績,還要了解這9名學生成績的()A.眾數 B.方差 C.平均數 D.中位數11.如圖,將邊長為8㎝的正方形ABCD折疊,使點D落在BC邊的中點E處,點A落在F處,折痕為MN,則線段CN的長是()A.3cm B.4cm C.5cm D.6cm12.若是關于x的方程的一個根,則方程的另一個根是()A.9 B.4 C.4 D.3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.布袋中裝有2個紅球和5個白球,它們除顏色外其它都相同.如果從這個布袋里隨機摸出一個球,那么所摸到的球恰好為紅球的概率是
________.14.如圖,已知△ABC中,AB=AC=5,BC=8,將△ABC沿射線BC方向平移m個單位得到△DEF,頂點A,B,C分別與D,E,F對應,若以A,D,E為頂點的三角形是等腰三角形,且AE為腰,則m的值是______.15.甲乙兩人進行飛鏢比賽,每人各投5次,所得平均環數相等,其中甲所得環數的方差為15,乙所得環數如下:0,1,5,9,10,那么成績較穩定的是_____(填“甲”或“乙”).16.如圖,與是以點為位似中心的位似圖形,相似比為,,,若點的坐標是,則點的坐標是__________.17.如圖,在網格中,小正方形的邊長均為1,點A、B、O都在格點上,則∠OAB的正弦值是_____.18.一組數據7,9,8,7,9,9,8的中位數是__________三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知,關于x的方程x2+2x-k=0有兩個不相等的實數根.(1)求k的取值范圍;(2)若x1,x2是這個方程的兩個實數根,求的值;(3)根據(2)的結果你能得出什么結論?20.(6分)如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.(1)求證:ED為⊙O的切線;(2)若⊙O的半徑為3,ED=4,EO的延長線交⊙O于F,連DF、AF,求△ADF的面積.21.(6分)觀察猜想:在Rt△ABC中,∠BAC=90°,AB=AC,點D在邊BC上,連接AD,把△ABD繞點A逆時針旋轉90°,點D落在點E處,如圖①所示,則線段CE和線段BD的數量關系是,位置關系是.探究證明:在(1)的條件下,若點D在線段BC的延長線上,請判斷(1)中結論是還成立嗎?請在圖②中畫出圖形,并證明你的判斷.拓展延伸:如圖③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他條件不變,過點D作DF⊥AD交CE于點F,請直接寫出線段CF長度的最大值.22.(8分)如圖,在△AOB中,∠ABO=90°,OB=1,AB=8,反比例函數y=在第一象限內的圖象分別交OA,AB于點C和點D,且△BOD的面積S△BOD=1.求反比例函數解析式;求點C的坐標.23.(8分)某調查小組采用簡單隨機抽樣方法,對某市部分中小學生一天中陽光體育運動時間進行了抽樣調查,并把所得數據整理后繪制成如下的統計圖:(1)該調查小組抽取的樣本容量是多少?(2)求樣本學生中陽光體育運動時間為1.5小時的人數,并補全占頻數分布直方圖;(3)請估計該市中小學生一天中陽光體育運動的平均時間.24.(10分)已知點E為正方形ABCD的邊AD上一點,連接BE,過點C作CN⊥BE,垂足為M,交AB于點N.(1)求證:△ABE≌△BCN;(2)若N為AB的中點,求tan∠ABE.25.(10分)研究發現,拋物線上的點到點F(0,1)的距離與到直線l:的距離相等.如圖1所示,若點P是拋物線上任意一點,PH⊥l于點H,則PF=PH.基于上述發現,對于平面直角坐標系xOy中的點M,記點到點的距離與點到點的距離之和的最小值為d,稱d為點M關于拋物線的關聯距離;當時,稱點M為拋物線的關聯點.(1)在點,,,中,拋物線的關聯點是_____;(2)如圖2,在矩形ABCD中,點,點,①若t=4,點M在矩形ABCD上,求點M關于拋物線的關聯距離d的取值范圍;②若矩形ABCD上的所有點都是拋物線的關聯點,則t的取值范圍是________.26.(12分)“分組合作學習”已成為推動課堂教學改革,打造自主高效課堂的重要措施.某中學從全校學生中隨機抽取部分學生對“分組合作學習”實施后的學習興趣情況進行調查分析,統計圖如下:請結合圖中信息解答下列問題:求出隨機抽取調查的學生人數;補全分組后學生學習興趣的條形統計圖;分組后學生學習興趣為“中”的所占的百分比和對應扇形的圓心角.27.(12分)已知,在平面直角坐標系xOy中,拋物線L:y=x2-4x+3與x軸交于A,B兩點(點A在點B的左側),頂點為C.(1)求點C和點A的坐標.(2)定義“L雙拋圖形”:直線x=t將拋物線L分成兩部分,首先去掉其不含頂點的部分,然后作出拋物線剩余部分關于直線x=t的對稱圖形,得到的整個圖形稱為拋物線L關于直線x=t的“L雙拋圖形”(特別地,當直線x=t恰好是拋物線的對稱軸時,得到的“L雙拋圖形”不變),①當t=0時,拋物線L關于直找x=0的“L雙拋圖形”如圖所示,直線y=3與“L雙拋圖形”有______個交點;②若拋物線L關于直線x=t的“L雙拋圖形”與直線y=3恰好有兩個交點,結合圖象,直接寫出t的取值范圍:______;③當直線x=t經過點A時,“L雙拋圖形”如圖所示,現將線段AC所在直線沿水平(x軸)方向左右平移,交“L雙拋圖形”于點P,交x軸于點Q,滿足PQ=AC時,求點P的坐標.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】分析:由表中所給數據,可求得二次函數解析式,則可求得其頂點坐標.詳解:當或時,,當時,,,解得,二次函數解析式為,拋物線的頂點坐標為,故選C.點睛:本題主要考查二次函數的性質,利用條件求得二次函數的解析式是解題的關鍵.2、A【解析】解:∵四邊形AOBC是矩形,∠ABO=10°,點B的坐標為(0,),∴AC=OB=,∠CAB=10°,∴BC=AC?tan10°=×=1.∵將△ABC沿AB所在直線對折后,點C落在點D處,∴∠BAD=10°,AD=.過點D作DM⊥x軸于點M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cos10°=,∴MO=﹣1=,∴點D的坐標為(,).故選A.3、C【解析】
解:因為設小明打字速度為x個/分鐘,所以小張打字速度為(x+6)個/分鐘,根據關系:小明打120個字所用的時間和小張打180個字所用的時間相等,可列方程得,故選C.【點睛】本題考查列分式方程解應用題,找準題目中的等量關系,難度不大.4、C【解析】試題解析::∵DE∥BC,∴,故選C.考點:平行線分線段成比例.5、C【解析】
根據旋轉的性質求解即可.【詳解】解:根據旋轉的性質,A:∠與∠均為旋轉角,故∠=∠,故A正確;B:,,又,,故B正確;D:,B′C平分∠BB′A′,故D正確.無法得出C中結論,故答案:C.【點睛】本題主要考查三角形旋轉后具有的性質,注意靈活運用各條件6、B【解析】從幾何體的正面看可得下圖,故選B.7、C【解析】
根據統計圖,利用眾數與中位數的概念即可得出答案.【詳解】從統計圖中可以得出這一周的氣溫分別是:12,15,14,10,13,14,11所以眾數為14;將氣溫按從低到高的順序排列為:10,11,12,13,14,14,15所以中位數為13故選:C.【點睛】本題主要考查中位數和眾數,掌握中位數和眾數的求法是解題的關鍵.8、B【解析】解:根據中位數的意義,故只要知道中位數就可以了.故選B.9、D【解析】
先求出點M到x軸、y軸的距離,再根據直線和圓的位置關系得出即可.【詳解】解:∵點M的坐標是(4,3),
∴點M到x軸的距離是3,到y軸的距離是4,
∵點M(4,3),以M為圓心,r為半徑的圓與x軸相交,與y軸相離,
∴r的取值范圍是3<r<4,
故選:D.【點睛】本題考查點的坐標和直線與圓的位置關系,能熟記直線與圓的位置關系的內容是解此題的關鍵.10、D【解析】
根據中位數是一組數據從小到大(或從大到小)重新排列后,最中間的那個數(最中間兩個數的平均數)的意義,9人成績的中位數是第5名的成績.參賽選手要想知道自己是否能進入前5名,只需要了解自己的成績以及全部成績的中位數,比較即可.【詳解】由于總共有9個人,且他們的分數互不相同,第5的成績是中位數,要判斷是否進入前5名,故應知道中位數的多少.故本題選:D.【點睛】本題考查了統計量的選擇,熟練掌握眾數,方差,平均數,中位數的概念是解題的關鍵.11、A【解析】分析:根據折疊的性質,只要求出DN就可以求出NE,在直角△CEN中,若設CN=x,則DN=NE=8﹣x,CE=4cm,根據勾股定理就可以列出方程,從而解出CN的長.詳解:設CN=xcm,則DN=(8﹣x)cm,由折疊的性質知EN=DN=(8﹣x)cm,而EC=BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8﹣x)2=16+x2,整理得16x=48,所以x=1.故選:A.點睛:此題主要考查了折疊問題,明確折疊問題其實質是軸對稱,對應線段相等,對應角相等,通常用勾股定理解決折疊問題.12、D【解析】
解:設方程的另一個根為a,由一元二次方程根與系數的故選可得,解得a=,故選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2【解析】試題解析:∵一個布袋里裝有2個紅球和5個白球,∴摸出一個球摸到紅球的概率為:22+5考點:概率公式.14、或5或1.【解析】
根據以點A,D,E為頂點的三角形是等腰三角形分類討論即可.【詳解】解:如圖(1)當在△ADE中,DE=5,當AD=DE=5時為等腰三角形,此時m=5.(2)又AC=5,當平移m個單位使得E、C點重合,此時AE=ED=5,平移的長度m=BC=1,(3)可以AE、AD為腰使ADE為等腰三角形,設平移了m個單位:則AN=3,AC=,AD=m,得:,得m=,綜上所述:m為或5或1,所以答案:或5或1.【點睛】本題主要考查等腰三角形的性質,注意分類討論的完整性.15、甲.【解析】乙所得環數的平均數為:=5,S2=[+++…+]=[++++]=16.4,甲的方差<乙的方差,所以甲較穩定.故答案為甲.點睛:要比較成績穩定即比方差大小,方差越大,越不穩定;方差越小,越穩定.16、(2,2)【解析】分析:首先解直角三角形得出A點坐標,再利用位似是特殊的相似,若兩個圖形與是以點為位似中心的位似圖形,相似比是k,上一點的坐標是則在中,它的對應點的坐標是或,進而求出即可.詳解:與是以點為位似中心的位似圖形,,,若點的坐標是,過點作交于點E.點的坐標為:與的相似比為,點的坐標為:即點的坐標為:故答案為:點睛:考查位似圖形的性質,熟練掌握位似圖形的性質是解題的關鍵.17、【解析】
如圖,過點O作OC⊥AB的延長線于點C,則AC=4,OC=2,在Rt△ACO中,AO=,∴sin∠OAB=.故答案為.18、1【解析】
將一組數據按照從小到大(或從大到小)的順序排列,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數.如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數,據此可得.【詳解】解:將數據重新排列為7、7、1、1、9、9、9,所以這組數據的中位數為1,故答案為1.【點睛】本題主要考查中位數,解題的關鍵是掌握中位數的定義.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)k>-1;(2)2;(3)k>-1時,的值與k無關.【解析】
(1)由題意得該方程的根的判別式大于零,列出不等式解答即可.(2)將要求的代數式通分相加轉化為含有兩根之和與兩根之積的形式,再根據根與系數的關系代數求值即可.(3)結合(1)和(2)結論可見,k>-1時,的值為定值2,與k無關.【詳解】(1)∵方程有兩個不等實根,∴△>0,即4+4k>0,∴k>-1(2)由根與系數關系可知x1+x2=-2,x1x2=-k,∴(3)由(1)可知,k>-1時,的值與k無關.【點睛】本題考查了一元二次方程的根的判別式,根與系數的關系等知識,熟練掌握相關知識點是解答關鍵.20、(1)見解析;(2)△ADF的面積是.【解析】試題分析:(1)連接OD,CD,求出∠BDC=90°,根據OE∥AB和OA=OC求出BE=CE,推出DE=CE,根據SSS證△ECO≌△EDO,推出∠EDO=∠ACB=90°即可;
(2)過O作OM⊥AB于M,過F作FN⊥AB于N,求出OM=FN,求出BC、AC、AB的值,根據sin∠BAC=,求出OM,根據cos∠BAC=,求出AM,根據垂徑定理求出AD,代入三角形的面積公式求出即可.試題解析:(1)證明:連接OD,CD,∵AC是⊙O的直徑,∴∠CDA=90°=∠BDC,∵OE∥AB,CO=AO,∴BE=CE,∴DE=CE,∵在△ECO和△EDO中,∴△ECO≌△EDO,∴∠EDO=∠ACB=90°,即OD⊥DE,OD過圓心O,∴ED為⊙O的切線.(2)過O作OM⊥AB于M,過F作FN⊥AB于N,則OM∥FN,∠OMN=90°,∵OE∥AB,∴四邊形OMFN是矩形,∴FN=OM,∵DE=4,OC=3,由勾股定理得:OE=5,∴AC=2OC=6,∵OE∥AB,∴△OEC∽△ABC,∴,∴,∴AB=10,在Rt△BCA中,由勾股定理得:BC==8,sin∠BAC=,即,OM==FN,∵cos∠BAC=,∴AM=由垂徑定理得:AD=2AM=,即△ADF的面積是AD×FN=××=.答:△ADF的面積是.【點睛】考查了切線的性質和判定,勾股定理,三角形的面積,垂徑定理,直角三角形的斜邊上中線性質,全等三角形的性質和判定等知識點的運用,通過做此題培養了學生的分析問題和解決問題的能力.21、(1)CE=BD,CE⊥BD.(2)(1)中的結論仍然成立.理由見解析;(3).【解析】分析:(1)線段AD繞點A逆時針旋轉90°得到AE,根據旋轉的性質得到AD=AE,∠BAD=∠CAE,得到△BAD≌△CAE,CE=BD,∠ACE=∠B,得到∠BCE=∠BCA+∠ACE=90°,于是有CE=BD,CE⊥BD.(2)證明的方法與(1)類似.(3)過A作AM⊥BC于M,EN⊥AM于N,根據旋轉的性質得到∠DAE=90°,AD=AE,利用等角的余角相等得到∠NAE=∠ADM,易證得Rt△AMD≌Rt△ENA,則NE=MA,由于∠ACB=45°,則AM=MC,所以MC=NE,易得四邊形MCEN為矩形,得到∠DCF=90°,由此得到Rt△AMD∽Rt△DCF,得,設DC=x,MD=1-x,利用相似比可得到CF=-x2+1,再利用二次函數即可求得CF的最大值.詳解:(1)①∵AB=AC,∠BAC=90°,∴線段AD繞點A逆時針旋轉90°得到AE,∴AD=AE,∠BAD=∠CAE,∴△BAD≌△CAE,∴CE=BD,∠ACE=∠B,∴∠BCE=∠BCA+∠ACE=90°,∴BD⊥CE;故答案為CE=BD,CE⊥BD.(2)(1)中的結論仍然成立.理由如下:如圖,∵線段AD繞點A逆時針旋轉90°得到AE,∴AE=AD,∠DAE=90°,∵AB=AC,∠BAC=90°∴∠CAE=∠BAD,∴△ACE≌△ABD,∴CE=BD,∠ACE=∠B,∴∠BCE=90°,即CE⊥BD,∴線段CE,BD之間的位置關系和數量關系分別為:CE=BD,CE⊥BD.(3)如圖3,過A作AM⊥BC于M,EN⊥AM于N,∵線段AD繞點A逆時針旋轉90°得到AE∴∠DAE=90°,AD=AE,∴∠NAE=∠ADM,易證得Rt△AMD≌Rt△ENA,∴NE=AM,∵∠ACB=45°,∴△AMC為等腰直角三角形,∴AM=MC,∴MC=NE,∵AM⊥BC,EN⊥AM,∴NE∥MC,∴四邊形MCEN為平行四邊形,∵∠AMC=90°,∴四邊形MCEN為矩形,∴∠DCF=90°,∴Rt△AMD∽Rt△DCF,∴,設DC=x,∵∠ACB=45°,AC=,∴AM=CM=1,MD=1-x,∴,∴CF=-x2+x=-(x-)2+,∴當x=時有最大值,CF最大值為.點睛:本題考查了旋轉的性質:旋轉前后的兩個圖形全等,對應點與旋轉中心的連線段的夾角等于旋轉角,對應點到旋轉中心的距離相等.也考查了等腰直角三角形的性質和三角形全等及相似的判定與性質.22、(1)反比例函數解析式為y=;(2)C點坐標為(2,1)【解析】
(1)由S△BOD=1可得BD的長,從而可得D的坐標,然后代入反比例函數解析式可求得k,從而得解析式為y=;(2)由已知可確定A點坐標,再由待定系數法求出直線AB的解析式為y=2x,然后解方程組即可得到C點坐標.【詳解】(1)∵∠ABO=90°,OB=1,S△BOD=1,∴OB×BD=1,解得BD=2,∴D(1,2)將D(1,2)代入y=,得2=,∴k=8,∴反比例函數解析式為y=;(2)∵∠ABO=90°,OB=1,AB=8,∴A點坐標為(1,8),設直線OA的解析式為y=kx,把A(1,8)代入得1k=8,解得k=2,∴直線AB的解析式為y=2x,解方程組得或,∴C點坐標為(2,1).23、(4)500;(4)440,作圖見試題解析;(4)4.4.【解析】
(4)利用0.5小時的人數除以其所占比例,即可求出樣本容量;(4)利用樣本容量乘以4.5小時的百分數,即可求出4.5小時的人數,畫圖即可;(4)計算出該市中小學生一天中陽光體育運動的平均時間即可.【詳解】解:(4)由題意可得:0.5小時的人數為:400人,所占比例為:40%,∴本次調查共抽樣了500名學生;(4)4.5小時的人數為:500×4.4=440(人),如圖所示:(4)根據題意得:=4.4,即該市中小學生一天中陽光體育運動的平均時間為4.4小時.考點:4.頻數(率)分布直方圖;4.扇形統計圖;4.加權平均數.24、(1)證明見解析;(2)1【解析】
(1)根據正方形的性質得到AB=BC,∠A=∠CBN=90°,∠1+∠2=90°,根據垂線和三角形內角和定理得到∠2+∠3=90°,推出∠1=∠3,根據ASA推出△ABE≌△BCN;(2)tan∠ABE=AEAB【詳解】(1)證明:∵四邊形ABCD為正方形∴AB=BC,∠A=∠CBN=90°,∠1+∠2=90°∵CM⊥BE,∴∠2+∠3=90°∴∠1=∠3在△ABE和△BCN中∠A=∴△ABE≌△BCN(ASA);(2)∵N為AB中點,∴BN=12又∵△ABE≌△BCN,∴AE=BN=12在Rt△ABE中,tan∠ABE═AEAB【點睛】本題主要考查了正方形的性質、三角形的內角和定理、垂線、全等三角形的性質和判定以及銳角三角函數等知識點的掌握和理解,證出△ABE≌△BCN是解此題的關鍵.25、(1)(2)①②【解析】【分析】(1)根據關聯點的定義逐一進行判斷即可得;(2))①當時,,,,,可以確定此時矩形上的所有點都在拋物線的下方,所以可得,由此可知,從而可得;②由①知,分兩種情況畫出圖形進行討論即可得.【詳解】(1),x=2時,y==1,此時P(2,1),則d=1+2=3,符合定義,是關聯點;,x=1時,y==,此時P(1,),則d=+=3,符合定義,是關聯點;,x=4時,y==4,此時P(4,4),則d=1+=6,不符合定義,不是關聯點;,x=0時,y==0,此時P(0,0),則d=4+5=9,不不符合定義,是關聯點,故答案為;(2)①當時,,,,,此時矩形上的所有點都在拋物線的下方,∴,∴,∵,∴;②由①,,如圖2所示時,CF最長,當CF=4時,即=4,解得:t=,如圖3所示時,DF最長,當DF=4時,即DF==4,解得t=,故答案為【點睛】本題考查了新定義題,二次函數的綜合,題目較難,讀懂新概念,能靈活應用新概念,結合圖形解題是關鍵.26、(1)200人;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公共衛生執業醫師考試備考中的調節方法試題及答案
- 理論與實踐結合的計算機二級考試試題及答案
- 母豬喂養方式對健康的影響試題及答案
- 學會靈活運用福建事業單位考試試題及答案
- 醫學基礎知識學習常規指導試題及答案2024年
- 人衛版外科試題及答案
- 初級會計師考試修訂變化分析試題及答案
- 第3-4單元綜合素養測評(培優卷)(含解析)-2024-2025學年三年級下冊數學常考易錯題(北師大版)
- 2024-2025學年四年級蘇教版下學期數學期中(1-4單元)考試卷(基礎卷)(含解析)
- 激發學習興趣的中小學教師資格考試試題及答案
- 湖北省孝感市漢川市2023-2024學年三年級下學期語文期中考試試卷
- 發生在肺內的氣體交換 課件-2024-2025學年人教版生物七年級下冊
- 奉化市體育特長生初中升高中排球專業考試評分標準
- 回收電纜知識培訓課件
- 2023年甘肅省高等職業教育招生中職升學考試旅游服務類專業基礎試題
- 大力弘揚教育家精神加快建設教育強國心得體會6篇
- (二調)武漢市2025屆高中畢業生二月調研考試 語文試卷(含官方答案解析)
- 2025年法學本科畢業論文評審標準分析
- 2025年中國防爆型插入式超聲波流量計市場調查研究報告
- 污水處理廠運營委托合同
- 鸚鵡可行性研究報告
評論
0/150
提交評論