




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2016高考數學專題復習(fùxí)導練測-第三章-導數與其應用階段測試(四)課件-理-新人教A版第一頁,共26頁。23456789101第二頁,共26頁。23456789101一、選擇題第三頁,共26頁。23456789101又直線(zhíxiàn)ax+y+3=0的斜率為-a,答案(dáàn)B第四頁,共26頁。345678910122.函數(hánshù)f(x)=-x3+ax2-x-1在R上是單調減函數(hánshù),那么實數a的取值范圍是()解析由題意(tíyì),知f′(x)=-3x2+2ax-1≤0在R上恒成立,B第五頁,共26頁。24567891013第六頁,共26頁。24567891013∴f(x)min=f(1)=0,∴a≤0,即a的最大值為0.答案(dáàn)A第七頁,共26頁。23567891014第八頁,共26頁。23567891014答案(dáàn)D第九頁,共26頁。234678910155.函數(hánshù)f(x)對定義域R內的任意x都有f(x)=f(4-x),且當x≠2時,其導函數(hánshù)f′(x)滿足xf′(x)>2f′(x),假設2<a<4,那么()A.f(2a)<f(3)<f(log2a) B.f(3)<f(log2a)<f(2a)C.f(log2a)<f(3)<f(2a) D.f(log2a)<f(2a)<f(3)第十頁,共26頁。23467891015解析由f(x)=f(4-x),可知函數圖象關于x=2對稱(duìchèn).由xf′(x)>2f′(x),得(x-2)f′(x)>0,所以當2<x<4時,f′(x)>0恒成立,函數f(x)單調遞增.由2<a<4,得1<log2a<2,22<2a<24,即4<2a<16.因為f(log2a)=f(4-log2a),所以2<4-log2a<3,即2<4-log2a<3<2a,第十一頁,共26頁。23467891015所以(suǒyǐ)f(4-log2a)<f(3)<f(2a),即f(log2a)<f(3)<f(2a).答案C第十二頁,共26頁。23457891016二、填空題第十三頁,共26頁。234568910177.函數(hánshù)f(x)=x3-3ax+b(a>0)的極大值為6,極小值為2,那么f(x)的單調遞減區間是________.f(x),f′(x)隨x的變化(biànhuà)情況如下表:x(-∞,)(,+∞)f′(x)+0-0+f(x)↗極大值↘極小值↗第十四頁,共26頁。23456891017答案(dáàn)(-1,1)第十五頁,共26頁。234569101788.f(x)=2x3-6x2+3,對任意的x∈[-2,2]都有f(x)≤a,那么(nàme)a的取值范圍為________.解析(jiěxī)由f′(x)=6x2-12x=0,得x=0或x=2.又f(-2)=-37,f(0)=3,f(2)=-5,∴f(x)max=3,又f(x)≤a,∴a≥3.[3,+∞)第十六頁,共26頁。三、解答題9.已知函數f(x)=
x2-alnx(a∈R).(1)若函數f(x)的圖象在x=2處的切線方程為y=x+b,求a,b的值;解因為f′(x)=x-(x>0),又f(x)在x=2處的切線(qiēxiàn)方程為y=x+b,23456781019第十七頁,共26頁。23456781019(2)假設(jiǎshè)函數f(x)在(1,+∞)上為增函數,求a的取值范圍.解假設(jiǎshè)函數f(x)在(1,+∞)上為增函數,即a≤x2在(1,+∞)上恒成立(chénglì).所以有a≤1.第十八頁,共26頁。2345678911010.(2014·大綱全國)函數f(x)=ln(x+1)-(a>1).(1)討論f(x)的單調性;①當1<a<2時,假設x∈(-1,a2-2a),那么(nàme)f′(x)>0,f(x)在(-1,a2-2a)是增函數;假設x∈(a2-2a,0),那么(nàme)f′(x)<0,f(x)在(a2-2a,0)是減函數;假設x∈(0,+∞),那么(nàme)f′(x)>0,f(x)在(0,+∞)是增函數.第十九頁,共26頁。23456789110②當a=2時,f′(x)≥0,f′(x)=0成立當且僅當x=0,f(x)在(-1,+∞)是增函數.③當a>2時,假設x∈(-1,0),那么(nàme)f′(x)>0,f(x)在(-1,0)是增函數;假設x∈(0,a2-2a),那么(nàme)f′(x)<0,f(x)在(0,a2-2a)是減函數;假設x∈(a2-2a,+∞),那么(nàme)f′(x)>0,f(x)在(a2-2a,+∞)是增函數.第二十頁,共26頁。23456789110證明(zhèngmíng)由(1)知,當a=2時,f(x)在(-1,+∞)是增函數.當x∈(0,+∞)時,f(x)>f(0)=0,又由(1)知,當a=3時,f(x)在[0,3)是減函數(hánshù).第二十一頁,共26頁。23456789110當x∈(0,3)時,f(x)<f(0)=0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蘭州工商學院《文本設計》2023-2024學年第二學期期末試卷
- 2025年江蘇省淮安市淮陰區高三第二輪復習測數學試題(文理)試卷含解析
- 2025年青島市高中學段校中考全國卷24省1月聯考丙卷物理試題含解析
- 吉林省長春市一五0中學2024-2025學年高三下學期第二次模擬考試歷史試題文試卷含解析
- 精神科護理核心制度
- 廣西南寧市第十四中學2025年高三下學期沖刺(二)英語試題含解析
- 西安健康工程職業學院《臨床聽力學實踐》2023-2024學年第二學期期末試卷
- 福建師范大學協和學院《全媒體運營》2023-2024學年第二學期期末試卷
- 2025年山西省高平市重點達標名校初三質量監測(四)物理試題含解析
- 崇左幼兒師范高等專科學校《資產評估實務與案例分析》2023-2024學年第一學期期末試卷
- 徐士良《計算機軟件技術基礎》(第4版)筆記和課后習題詳解
- 房屋建造過程課件
- 坯布檢驗標準及檢驗規范
- 帶壓堵漏、帶壓開孔作業安全管理制度
- (新教材)教科版二年級上冊科學 1.2 土壤 動植物的樂園 教學課件
- 采用冷卻塔變流量的中央空調冷卻水系統能效分解
- 航空航天技術概論
- 籃球比賽記錄表(上下半場)
- 畢業設計-太平哨水利樞紐引水式水電站設計
- 新云智能化管理系統運行管理標準
- 畢業設計(論文)-多功能平板道路清障車設計(拖拽車)
評論
0/150
提交評論