




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,二次函數y=ax2+bx+c(a≠0)的圖象經過點(1,2)且與x軸交點的橫坐標分別為x1,x2,其中﹣1<x1<0,1<x2<2,下列結論:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中結論正確的有()A.1個 B.2個 C.3個 D.4個2.解分式方程時,去分母后變形為A. B.C. D.3.下列事件中,屬于必然事件的是()A.三角形的外心到三邊的距離相等B.某射擊運動員射擊一次,命中靶心C.任意畫一個三角形,其內角和是180°D.拋一枚硬幣,落地后正面朝上4.如圖,在射線AB上順次取兩點C,D,使AC=CD=1,以CD為邊作矩形CDEF,DE=2,將射線AB繞點A沿逆時針方向旋轉,旋轉角記為α(其中0°<α<45°),旋轉后記作射線AB′,射線AB′分別交矩形CDEF的邊CF,DE于點G,H.若CG=x,EH=y,則下列函數圖象中,能反映y與x之間關系的是()A. B. C. D.5.已知關于x,y的二元一次方程組的解為,則a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣36.如圖,在菱形紙片ABCD中,AB=4,∠A=60°,將菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F、G分別在邊AB、AD上.則sin∠AFG的值為()A. B. C. D.7.如圖,在△ABC中,分別以點A和點C為圓心,大于AC長為半徑畫弧,兩弧相交于點M,N,作直線MN分別交BC,AC于點D,E,若AE=3cm,△ABD的周長為13cm,則△ABC的周長為()A.16cm B.19cm C.22cm D.25cm8.把不等式組的解集表示在數軸上,正確的是()A. B.C. D.9.下列圖形是由同樣大小的棋子按照一定規律排列而成的,其中,圖①中有5個棋子,圖②中有10個棋子,圖③中有16個棋子,…,則圖⑥________中有個棋子()A.31 B.35 C.40 D.5010.如圖,△ABC紙片中,∠A=56,∠C=88°.沿過點B的直線折疊這個三角形,使點C落在AB邊上的點E處,折痕為BD.則∠BDE的度數為()A.76° B.74° C.72° D.70°二、填空題(共7小題,每小題3分,滿分21分)11.肥皂泡的泡壁厚度大約是,用科學記數法表示為_______.12.如圖所示,把一張長方形紙片沿折疊后,點分別落在點的位置.若,則等于________.13.計算:(π﹣3)0﹣2-1=_____.14.如圖,已知O為△ABC內一點,點D、E分別在邊AB和AC上,且,DE∥BC,設、,那么______(用、表示).15.如圖,AB是半徑為2的⊙O的弦,將沿著弦AB折疊,正好經過圓心O,點C是折疊后的上一動點,連接并延長BC交⊙O于點D,點E是CD的中點,連接AC,AD,EO.則下列結論:①∠ACB=120°,②△ACD是等邊三角形,③EO的最小值為1,其中正確的是_____.(請將正確答案的序號填在橫線上)16.分解因式:_____.17.為了求1+2+22+23+…+22016+22017的值,可令S=1+2+22+23+…+22016+22017,則2S=2+22+23+24+…+22017+22018,因此2S﹣S=22018﹣1,所以1+22+23+…+22017=22018﹣1.請你仿照以上方法計算1+5+52+53+…+52017的值是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在Rt△ABC中,∠C=90°,O為BC邊上一點,以OC為半徑的圓O,交AB于D點,且AD=AC,延長DO交圓O于E點,連接AE.求證:DE⊥AB;若DB=4,BC=8,求AE的長.19.(5分)某工廠計劃在規定時間內生產24000個零件,若每天比原計劃多生產30個零件,則在規定時間內可以多生產300個零件.求原計劃每天生產的零件個數和規定的天數.為了提前完成生產任務,工廠在安排原有工人按原計劃正常生產的同時,引進5組機器人生產流水線共同參與零件生產,已知每組機器人生產流水線每天生產零件的個數比20個工人原計劃每天生產的零件總數還多20%,按此測算,恰好提前兩天完成24000個零件的生產任務,求原計劃安排的工人人數.20.(8分)隨著經濟的快速發展,環境問題越來越受到人們的關注,某校學生會為了解節能減排、垃圾分類知識的普及情況,隨機調查了部分學生,調查結果分為“非常了解”“了解”“了解較少”“不了解”四類,并將調查結果繪制成下面兩個統計圖.(1)本次調查的學生共有人,估計該校1200名學生中“不了解”的人數是人;(2)“非常了解”的4人有A1,A2兩名男生,B1,B2兩名女生,若從中隨機抽取兩人向全校做環保交流,請利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.21.(10分)我國古代數學著作《增刪算法統宗》記載“繩索量竿”問題:“一條竿子一條索,索比竿子長一托,折回索子卻量竿,卻比竿子短一托”其大意為:現有一根竿和一根繩索,用繩索去量竿,繩索比竿長5尺;如果將繩索對半折后再去量竿,就比竿短5尺.求繩索長和竿長.22.(10分)如圖,已知一次函數y=kx+b的圖象與反比例函數y=8(1)求一次函數的解析式;(2)求ΔAOB的面積。23.(12分)畫出二次函數y=(x﹣1)2的圖象.24.(14分)“校園詩歌大賽”結束后,張老師和李老師將所有參賽選手的比賽成績(得分均為整數)進行整理,并分別繪制成扇形統計圖和頻數直方圖部分信息如下:本次比賽參賽選手共有人,扇形統計圖中“69.5~79.5”這一組人數占總參賽人數的百分比為;賽前規定,成績由高到低前60%的參賽選手獲獎.某參賽選手的比賽成績為78分,試判斷他能否獲獎,并說明理由;成績前四名是2名男生和2名女生,若從他們中任選2人作為獲獎代表發言,試求恰好選中1男1女的概率.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】由拋物線的開口向下知a<0,與y軸的交點為在y軸的正半軸上,得c>0,對稱軸為x=<1,∵a<0,∴2a+b<0,而拋物線與x軸有兩個交點,∴?4ac>0,當x=2時,y=4a+2b+c<0,當x=1時,a+b+c=2.∵>2,∴4ac?<8a,∴+8a>4ac,∵①a+b+c=2,則2a+2b+2c=4,②4a+2b+c<0,③a?b+c<0.由①,③得到2a+2c<2,由①,②得到2a?c<?4,4a?2c<?8,上面兩個相加得到6a<?6,∴a<?1.故選D.點睛:本題考查了二次函數圖象與系數的關系,二次函數中,a的符號由拋物線的開口方向決定;c的符號由拋物線與y軸交點的位置決定;b的符號由對稱軸位置與a的符號決定;拋物線與x軸的交點個數決定根的判別式的符號,注意二次函數圖象上特殊點的特點.2、D【解析】試題分析:方程,兩邊都乘以x-1去分母后得:2-(x+2)=3(x-1),故選D.考點:解分式方程的步驟.3、C【解析】分析:必然事件就是一定發生的事件,依據定義即可作出判斷.詳解:A、三角形的外心到三角形的三個頂點的距離相等,三角形的內心到三邊的距離相等,是不可能事件,故本選項不符合題意;B、某射擊運動員射擊一次,命中靶心是隨機事件,故本選項不符合題意;C、三角形的內角和是180°,是必然事件,故本選項符合題意;D、拋一枚硬幣,落地后正面朝上,是隨機事件,故本選項不符合題意;故選C.點睛:解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發生的事件.不可能事件是指在一定條件下,一定不發生的事件.不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件.4、D【解析】∵四邊形CDEF是矩形,∴CF∥DE,∴△ACG∽△ADH,∴,∵AC=CD=1,∴AD=2,∴,∴DH=2x,∵DE=2,∴y=2﹣2x,∵0°<α<45°,∴0<x<1,故選D.【點睛】本題主要考查了旋轉、相似等知識,解題的關鍵是根據已知得出△ACG∽△ADH.5、B【解析】
把代入方程組得:,解得:,所以a?2b=?2×()=2.故選B.6、B【解析】
如圖:過點E作HE⊥AD于點H,連接AE交GF于點N,連接BD,BE.由題意可得:DE=1,∠HDE=60°,△BCD是等邊三角形,即可求DH的長,HE的長,AE的長,
NE的長,EF的長,則可求sin∠AFG的值.【詳解】解:如圖:過點E作HE⊥AD于點H,連接AE交GF于點N,連接BD,BE.
∵四邊形ABCD是菱形,AB=4,∠DAB=60°,
∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB
∴∠HDE=∠DAB=60°,
∵點E是CD中點
∴DE=CD=1
在Rt△DEH中,DE=1,∠HDE=60°
∴DH=1,HE=
∴AH=AD+DH=5
在Rt△AHE中,AE==1
∴AN=NE=,AE⊥GF,AF=EF
∵CD=BC,∠DCB=60°
∴△BCD是等邊三角形,且E是CD中點
∴BE⊥CD,
∵BC=4,EC=1
∴BE=1
∵CD∥AB
∴∠ABE=∠BEC=90°
在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.
∴EF=由折疊性質可得∠AFG=∠EFG,
∴sin∠EFG=sin∠AFG=,故選B.【點睛】本題考查了折疊問題,菱形的性質,勾股定理,添加恰當的輔助線構造直角三角形,利用勾股定理求線段長度是本題的關鍵.7、B【解析】
根據作法可知MN是AC的垂直平分線,利用垂直平分線的性質進行求解即可得答案.【詳解】解:根據作法可知MN是AC的垂直平分線,∴DE垂直平分線段AC,∴DA=DC,AE=EC=6cm,∵AB+AD+BD=13cm,∴AB+BD+DC=13cm,∴△ABC的周長=AB+BD+BC+AC=13+6=19cm,故選B.【點睛】本題考查作圖-基本作圖,線段的垂直平分線的性質等知識,解題的關鍵是熟練掌握線段的垂直平分線的性質.8、A【解析】
分別求出各個不等式的解集,再求出這些解集的公共部分并在數軸上表示出來即可.【詳解】由①,得x≥2,
由②,得x<1,
所以不等式組的解集是:2≤x<1.
不等式組的解集在數軸上表示為:
.
故選A.【點睛】本題考查的是解一元一次不等式組.熟知“同大取大;同小取小;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.9、C【解析】
根據題意得出第n個圖形中棋子數為1+2+3+…+n+1+2n,據此可得.【詳解】解:∵圖1中棋子有5=1+2+1×2個,圖2中棋子有10=1+2+3+2×2個,圖3中棋子有16=1+2+3+4+3×2個,…∴圖6中棋子有1+2+3+4+5+6+7+6×2=40個,故選C.【點睛】本題考查了圖形的變化規律,通過從一些特殊的圖形變化中發現不變的因素或按規律變化的因素,然后推廣到一般情況.10、B【解析】
直接利用三角形內角和定理得出∠ABC的度數,再利用翻折變換的性質得出∠BDE的度數.【詳解】解:∵∠A=56°,∠C=88°,
∴∠ABC=180°-56°-88°=36°,
∵沿過點B的直線折疊這個三角形,使點C落在AB邊上的點E處,折痕為BD,
∴∠CBD=∠DBE=18°,∠C=∠DEB=88°,
∴∠BDE=180°-18°-88°=74°.
故選:B.【點睛】此題主要考查了三角形內角和定理,正確掌握三角形內角和定理是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、7×10-1.【解析】
絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×10-n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.【詳解】0.0007=7×10-1.故答案為:7×10-1.【點睛】本題考查用科學記數法表示較小的數,一般形式為a×10-n,其中1≤|a|<10,n為由原數左邊起第一個不為零的數字前面的0的個數所決定.12、50°【解析】
先根據平行線的性質得出∠DEF的度數,再根據翻折變換的性質得出∠D′EF的度數,根據平角的定義即可得出結論.【詳解】∵AD∥BC,∠EFB=65°,
∴∠DEF=65°,
又∵∠DEF=∠D′EF,
∴∠D′EF=65°,
∴∠AED′=50°.【點睛】本題考查翻折變換(折疊問題)和平行線的性質,解題的關鍵是掌握翻折變換(折疊問題)和平行線的性質.13、12【解析】
分別利用零指數冪a0=1(a≠0),負指數冪a-p=1a【詳解】解:(π﹣3)0﹣2-1=1-12=1故答案為:12【點睛】本題考查了零指數冪和負整數指數冪的運算,掌握運算法則是解題關鍵.14、【解析】
根據,DE∥BC,結合平行線分線段成比例來求.【詳解】∵,DE∥BC,∴,∴==.∵,∴∴.故答案為:.【點睛】本題考查的知識點是平面向量,解題的關鍵是熟練的掌握平面向量.15、①②【解析】
根據折疊的性質可知,結合垂徑定理、三角形的性質、同圓或等圓中圓周角與圓心的性質等可以判斷①②是否正確,EO的最小值問題是個難點,這是一個動點問題,只要把握住E在什么軌跡上運動,便可解決問題.【詳解】如圖1,連接OA和OB,作OF⊥AB.
由題知:沿著弦AB折疊,正好經過圓心O
∴OF=OA=OB
∴∠AOF=∠BOF=60°
∴∠AOB=120°
∴∠ACB=120°(同弧所對圓周角相等)
∠D=∠AOB=60°(同弧所對的圓周角是圓心角的一半)
∴∠ACD=180°-∠ACB=60°
∴△ACD是等邊三角形(有兩個角是60°的三角形是等邊三角形)
故,①②正確
下面研究問題EO的最小值是否是1
如圖2,連接AE和EF
∵△ACD是等邊三角形,E是CD中點
∴AE⊥BD(三線合一)
又∵OF⊥AB
∴F是AB中點
即,EF是△ABE斜邊中線
∴AF=EF=BF
即,E點在以AB為直徑的圓上運動.
所以,如圖3,當E、O、F在同一直線時,OE長度最小
此時,AE=EF,AE⊥EF
∵⊙O的半徑是2,即OA=2,OF=1
∴AF=(勾股定理)
∴OE=EF-OF=AF-OF=-1
所以,③不正確
綜上所述:①②正確,③不正確.
故答案是:①②.【點睛】考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.也考查了垂徑定理.16、【解析】分析:要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續分解因式.因此,先提取公因式2后繼續應用完全平方公式分解即可:.17、【解析】
根據上面的方法,可以令S=1+5+52+53+…+52017,則5S=5+52+53+…+52012+52018,再相減算出S的值即可.【詳解】解:令S=1+5+52+53+…+52017,則5S=5+52+53+…+52012+52018,5S﹣S=﹣1+52018,4S=52018﹣1,則S=,故答案為:.【點睛】此題參照例子,采用類比的方法就可以解決,注意這里由于都是5的次方,所以要用5S來達到抵消的目的.三、解答題(共7小題,滿分69分)18、(1)詳見解析;(2)6【解析】
(1)連接CD,證明即可得到結論;(2)設圓O的半徑為r,在Rt△BDO中,運用勾股定理即可求出結論.【詳解】(1)證明:連接CD,∵∴∵∴.(2)設圓O的半徑為,,設.【點睛】本題綜合考查了切線的性質和判定及勾股定理的綜合運用.綜合性比較強,對于學生的能力要求比較高.19、(1)2400個,10天;(2)1人.【解析】
(1)設原計劃每天生產零件x個,根據相等關系“原計劃生產24000個零件所用時間=實際生產(24000+300)個零件所用的時間”可列方程,解出x即為原計劃每天生產的零件個數,再代入即可求得規定天數;(2)設原計劃安排的工人人數為y人,根據“(5組機器人生產流水線每天生產的零件個數+原計劃每天生產的零件個數)×(規定天數-2)=零件總數24000個”可列方程[5×20×(1+20%)×+2400]×(10-2)=24000,解得y的值即為原計劃安排的工人人數.【詳解】解:(1)解:設原計劃每天生產零件x個,由題意得,,解得x=2400,經檢驗,x=2400是原方程的根,且符合題意.∴規定的天數為24000÷2400=10(天).答:原計劃每天生產零件2400個,規定的天數是10天.(2)設原計劃安排的工人人數為y人,由題意得,[5×20×(1+20%)×+2400]×(10-2)=24000,解得,y=1.經檢驗,y=1是原方程的根,且符合題意.答:原計劃安排的工人人數為1人.【點睛】本題考查分式方程的應用,找準等量關系是本題的解題關鍵,注意分式方程結果要檢驗.20、(1)50,360;(2).【解析】試題分析:(1)根據圖示,可由非常了解的人數和所占的百分比直接求解總人數,然后根據求出不了解的百分比估計即可;(2)根據題意畫出樹狀圖,然后求出總可能和“一男一女”的可能,再根據概率的意義求解即可.試題解析:(1)由餅圖可知“非常了解”為8%,由柱形圖可知(條形圖中可知)“非常了解”為4人,故本次調查的學生有(人)由餅圖可知:“不了解”的概率為,故1200名學生中“不了解”的人數為(人)(2)樹狀圖:由樹狀圖可知共有12種結果,抽到1男1女分別為共8種.∴考點:1、扇形統計圖,2、條形統計圖,3、概率21、繩索長為20尺,竿長為15尺.【解析】
設索長為x尺,竿子長為y尺,根據“索比竿子長一托,對折索子來量竿,卻比竿子短一托”,即可得出關于x、y的二元一次方程組,解之即可得出結論.【詳解】設繩索長、竿長分別為尺,尺,依題意得:解得:,.答:繩索長為20尺,竿長為15尺.【點睛】本題考查了二元一次方程組的應用,找準等量關系,正確列出二元一次方程組是解題的關鍵.22、(1)y=x+2;(2)6.【解析】
(1)由反比例函數解析式根據點A的橫坐標是2,點B的縱坐標是-2可以求得點A、點B的坐標,然后根據
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 音樂培訓協議書范本
- 家具轉讓協議書文檔
- 平房只有單位協議書
- 商鋪租金轉移協議書
- 向陽水庫補償協議書
- 投資開辦醫院協議書
- 民間比武協議書范本
- 捐贈眼睛協議書模板
- 重建鄰居房屋協議書
- 租車買車協議書模板
- 2025年內蒙古中考一模英語試題(原卷版+解析版)
- 銀行案件防控課件
- 2025年江蘇省安全員B證考試題庫附答案
- 科級試用期滿工作總結(4篇)
- 歷史-安徽省蚌埠市2025屆高三年級第二次教學質量檢查考試(蚌埠二模)試題和答案
- 2025年從大模型、智能體到復雜AI應用系統的構建報告-以產業大腦為例-浙江大學(肖俊)
- 2025年浙江省金華市中考一模數學模擬試題(含答案)
- 2024年國家發展和改革委員會直屬單位招聘考試真題
- 《中國古代神話》課件
- 供應商考核管理制度
- 酒店動火作業安全制度
評論
0/150
提交評論