2023屆福建省南平市中考考前最后一卷數學試卷含解析_第1頁
2023屆福建省南平市中考考前最后一卷數學試卷含解析_第2頁
2023屆福建省南平市中考考前最后一卷數學試卷含解析_第3頁
2023屆福建省南平市中考考前最后一卷數學試卷含解析_第4頁
2023屆福建省南平市中考考前最后一卷數學試卷含解析_第5頁
已閱讀5頁,還剩25頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.實數a,b在數軸上對應的點的位置如圖所示,則正確的結論是()A.a+b<0 B.a>|﹣2| C.b>π D.2.如圖,△ABC中,∠CAB=65°,在同一平面內,將△ABC繞點A旋轉到△AED的位置,使得DC∥AB,則∠BAE等于()A.30° B.40° C.50° D.60°3.計算﹣的結果為()A. B. C. D.4.若點A(a,b),B(,c)都在反比例函數y=的圖象上,且﹣1<c<0,則一次函數y=(b﹣c)x+ac的大致圖象是()A. B.C. D.5.如圖所示的工件,其俯視圖是()A. B. C. D.6.如圖,將周長為8的△ABC沿BC方向平移1個單位長度得到,則四邊形的周長為()A.8 B.10 C.12 D.167.下列運算結果是無理數的是()A.3× B. C. D.8.從3、1、-2這三個數中任取兩個不同的數作為P點的坐標,則P點剛好落在第四象限的概率是()A. B. C. D.9.在六張卡片上分別寫有,π,1.5,5,0,六個數,從中任意抽取一張,卡片上的數為無理數的概率是()A. B. C. D.10.如圖,在中,邊上的高是()A. B. C. D.11.用6個相同的小正方體搭成一個幾何體,若它的俯視圖如圖所示,則它的主視圖不可能是()A. B. C. D.12.如圖,△ABC是⊙O的內接三角形,AC是⊙O的直徑,∠C=50°,∠ABC的平分線BD交⊙O于點D,則∠BAD的度數是()A.45° B.85° C.90° D.95°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若分式的值為正,則實數的取值范圍是__________________.14.在不透明的口袋中有若干個完全一樣的紅色小球,現放入10個僅顏色不同的白色小球,均勻混合后,有放回的隨機摸取30次,有10次摸到白色小球,據此估計該口袋中原有紅色小球個數為_____.15.如圖,在等腰△ABC中,AB=AC,BC邊上的高AD=6cm,腰AB上的高CE=8cm,則BC=_____cm16.某航空公司規定,乘客所攜帶行李的重量x(kg)與運費y(元)滿足如圖所示的函數圖象,那么每位乘客最多可免費攜帶____kg的行李.17.規定:,如:,若,則=__.18.在如圖所示的正方形方格紙中,每個小的四邊形都是相同的正方形,A、B、C、D都是格點,AB與CD相交于M,則AM:BM=__.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)(11分)閱讀資料:如圖1,在平面之間坐標系xOy中,A,B兩點的坐標分別為A(x1,y1),B(x1,y1),由勾股定理得AB1=|x1﹣x1|1+|y1﹣y1|1,所以A,B兩點間的距離為AB=.我們知道,圓可以看成到圓心距離等于半徑的點的集合,如圖1,在平面直角坐標系xoy中,A(x,y)為圓上任意一點,則A到原點的距離的平方為OA1=|x﹣0|1+|y﹣0|1,當⊙O的半徑為r時,⊙O的方程可寫為:x1+y1=r1.問題拓展:如果圓心坐標為P(a,b),半徑為r,那么⊙P的方程可以寫為.綜合應用:如圖3,⊙P與x軸相切于原點O,P點坐標為(0,6),A是⊙P上一點,連接OA,使tan∠POA=,作PD⊥OA,垂足為D,延長PD交x軸于點B,連接AB.①證明AB是⊙P的切點;②是否存在到四點O,P,A,B距離都相等的點Q?若存在,求Q點坐標,并寫出以Q為圓心,以OQ為半徑的⊙O的方程;若不存在,說明理由.20.(6分)如圖,拋物線y=ax2+bx+c(a>0)的頂點為M,直線y=m與拋物線交于點A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點之間的部分與線段AB圍成的圖形稱為該拋物線對應的準蝶形,線段AB稱為碟寬,頂點M稱為碟頂.(1)由定義知,取AB中點N,連結MN,MN與AB的關系是_____.(2)拋物線y=對應的準蝶形必經過B(m,m),則m=_____,對應的碟寬AB是_____.(3)拋物線y=ax2﹣4a﹣(a>0)對應的碟寬在x軸上,且AB=1.①求拋物線的解析式;②在此拋物線的對稱軸上是否有這樣的點P(xp,yp),使得∠APB為銳角,若有,請求出yp的取值范圍.若沒有,請說明理由.21.(6分)如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).(1)求拋物線的表達式;(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.22.(8分)“不出城郭而獲山水之怡,身居鬧市而有林泉之致”,合肥市某區不斷推進“園林城市”建設,今春種植了四類花苗,園林部門從種植的這批花苗中隨機抽取了2000株,將四類花苗的種植株數繪制成扇形統計圖,將四類花苗的成活株數繪制成條形統圖.經統計這批2000株的花苗總成活率為90%,其中玉蘭和月季的成活率較高,根據圖表中的信息解答下列問題:扇形統計圖中玉蘭所對的圓心角為,并補全條形統計圖;該區今年共種植月季8000株,成活了約株;園林部門決定明年從這四類花苗中選兩類種植,請用列表法或畫樹狀圖求恰好選到成活率較高的兩類花苗的概率.23.(8分)如圖,直線與軸交于點,與軸交于點,且與雙曲線的一個交點為,將直線在軸下方的部分沿軸翻折,得到一個“”形折線的新函數.若點是線段上一動點(不包括端點),過點作軸的平行線,與新函數交于另一點,與雙曲線交于點.(1)若點的橫坐標為,求的面積;(用含的式子表示)(2)探索:在點的運動過程中,四邊形能否為平行四邊形?若能,求出此時點的坐標;若不能,請說明理由.24.(10分)老師布置了一個作業,如下:已知:如圖1的對角線的垂直平分線交于點,交于點,交于點.求證:四邊形是菱形.某同學寫出了如圖2所示的證明過程,老師說該同學的作業是錯誤的.請你解答下列問題:能找出該同學錯誤的原因嗎?請你指出來;請你給出本題的正確證明過程.25.(10分)圖1和圖2中,優弧紙片所在⊙O的半徑為2,AB=2,點P為優弧上一點(點P不與A,B重合),將圖形沿BP折疊,得到點A的對稱點A′.發現:(1)點O到弦AB的距離是,當BP經過點O時,∠ABA′=;(2)當BA′與⊙O相切時,如圖2,求折痕的長.拓展:把上圖中的優弧紙片沿直徑MN剪裁,得到半圓形紙片,點P(不與點M,N重合)為半圓上一點,將圓形沿NP折疊,分別得到點M,O的對稱點A′,O′,設∠MNP=α.(1)當α=15°時,過點A′作A′C∥MN,如圖3,判斷A′C與半圓O的位置關系,并說明理由;(2)如圖4,當α=°時,NA′與半圓O相切,當α=°時,點O′落在上.(3)當線段NO′與半圓O只有一個公共點N時,直接寫出β的取值范圍.26.(12分)如圖,拋物線(a≠0)的圖象與x軸交于A、B兩點,與y軸交于C點,已知B點坐標為(4,0).(1)求拋物線的解析式;(2)試探究△ABC的外接圓的圓心位置,并求出圓心坐標;(3)若點M是線段BC下方的拋物線上一點,求△MBC的面積的最大值,并求出此時M點的坐標.27.(12分)如圖,以O為圓心,4為半徑的圓與x軸交于點A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度數;(2)P為x軸正半軸上一點,且PA=OA,連接PC,試判斷PC與⊙O的位置關系,并說明理由;(3)有一動點M從A點出發,在⊙O上按順時針方向運動一周,當S△MAO=S△CAO時,求動點M所經過的弧長,并寫出此時M點的坐標.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

根據數軸上點的位置,可得a,b,根據有理數的運算,可得答案.【詳解】a=﹣2,2<b<1.A.a+b<0,故A不符合題意;B.a<|﹣2|,故B不符合題意;C.b<1<π,故C不符合題意;D.<0,故D符合題意;故選D.【點睛】本題考查了實數與數軸,利用有理數的運算是解題關鍵.2、C【解析】試題分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC繞點A旋轉到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°."∴∠CAD=180°﹣∠ADC﹣∠DCA="50°."∴∠BAE=50°.故選C.考點:1.面動旋轉問題;2.平行線的性質;3.旋轉的性質;4.等腰三角形的性質.3、A【解析】

根據分式的運算法則即可【詳解】解:原式=,故選A.【點睛】本題主要考查分式的運算。4、D【解析】

將,代入,得,,然后分析與的正負,即可得到的大致圖象.【詳解】將,代入,得,,即,.∴.∵,∴,∴.即與異號.∴.又∵,故選D.【點睛】本題考查了反比例函數圖像上點的坐標特征,一次函數的圖像與性質,得出與的正負是解答本題的關鍵.5、B【解析】試題分析:從上邊看是一個同心圓,外圓是實線,內圓是虛線,故選B.點睛:本題考查了簡單組合體的三視圖,從上邊看得到的圖形是俯視圖.看得見部分的輪廓線要畫成實線,看不見部分的輪廓線要畫成虛線.6、B【解析】根據平移的基本性質,得出四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.根據題意,將周長為8個單位的△ABC沿邊BC向右平移1個單位得到△DEF,

∴AD=1,BF=BC+CF=BC+1,DF=AC;

又∵AB+BC+AC=8,

∴四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC=1.

故選C.“點睛”本題考查平移的基本性質:①平移不改變圖形的形狀和大小;②經過平移,對應點所連的線段平行且相等,對應線段平行且相等,對應角相等.得到CF=AD,DF=AC是解題的關鍵.7、B【解析】

根據二次根式的運算法則即可求出答案.【詳解】A選項:原式=3×2=6,故A不是無理數;B選項:原式=,故B是無理數;C選項:原式==6,故C不是無理數;D選項:原式==12,故D不是無理數故選B.【點睛】考查二次根式的運算,解題的關鍵是熟練運用二次根式的運算法則,本題屬于基礎題型.8、B【解析】解:畫樹狀圖得:∵共有6種等可能的結果,其中(1,-2),(3,-2)點落在第四項象限,∴P點剛好落在第四象限的概率==.故選B.點睛:本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件,熟記各象限內點的符號特點是解題的關鍵.9、B【解析】

無限不循環小數叫無理數,無理數通常有以下三種形式:一是開方開不盡的數,二是圓周率π,三是構造的一些不循環的數,如1.010010001……(兩個1之間0的個數一次多一個).然后用無理數的個數除以所有書的個數,即可求出從中任意抽取一張,卡片上的數為無理數的概率.【詳解】∵這組數中無理數有,共2個,∴卡片上的數為無理數的概率是.故選B.【點睛】本題考查了無理數的定義及概率的計算.10、D【解析】

根據三角形的高線的定義解答.【詳解】根據高的定義,AF為△ABC中BC邊上的高.故選D.【點睛】本題考查了三角形的高的定義,熟記概念是解題的關鍵.11、D【解析】分析:根據主視圖和俯視圖之間的關系可以得出答案.詳解:∵主視圖和俯視圖的長要相等,∴只有D選項中的長和俯視圖不相等,故選D.點睛:本題主要考查的就是三視圖的畫法,屬于基礎題型.三視圖的畫法為:主視圖和俯視圖的長要相等;主視圖和左視圖的高要相等;左視圖和俯視圖的寬要相等.12、B【解析】

解:∵AC是⊙O的直徑,∴∠ABC=90°,∵∠C=50°,∴∠BAC=40°,∵∠ABC的平分線BD交⊙O于點D,∴∠ABD=∠DBC=45°,∴∠CAD=∠DBC=45°,∴∠BAD=∠BAC+∠CAD=40°+45°=85°,故選B.【點睛】本題考查圓周角定理;圓心角、弧、弦的關系.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x>0【解析】【分析】分式值為正,則分子與分母同號,據此進行討論即可得.【詳解】∵分式的值為正,∴x與x2+2的符號同號,∵x2+2>0,∴x>0,故答案為x>0.【點睛】本題考查了分式值為正的情況,熟知分式值為正時,分子分母同號是解題的關鍵.14、20【解析】

利用頻率估計概率,設原來紅球個數為x個,根據摸取30次,有10次摸到白色小球結合概率公式可得關于x的方程,解方程即可得.【詳解】設原來紅球個數為x個,則有=,解得,x=20,經檢驗x=20是原方程的根.故答案為20.【點睛】本題考查了利用頻率估計概率和概率公式的應用,熟練掌握概率的求解方法以及分式方程的求解方法是解題的關鍵.15、【解析】

根據三角形的面積公式求出=,根據等腰三角形的性質得到BD=DC=BC,根據勾股定理列式計算即可.【詳解】∵AD是BC邊上的高,CE是AB邊上的高,∴AB?CE=BC?AD,∵AD=6,CE=8,∴=,∴=,∵AB=AC,AD⊥BC,∴BD=DC=BC,∵AB2?BD2=AD2,∴AB2=BC2+36,即BC2=BC2+36,解得:BC=.故答案為:.【點睛】本題考查的是等腰三角形的性質、勾股定理的應用和三角形面積公式的應用,根據三角形的面積公式求出腰與底的比是解題的關16、2【解析】

設乘客所攜帶行李的重量x(kg)與運費y(元)之間的函數關系式為y=kx+b,由待定系數法求出其解即可.【詳解】解:設乘客所攜帶行李的重量x(kg)與運費y(元)之間的函數關系式為y=kx+b,由題意,得,解得,,則y=30x-1.

當y=0時,

30x-1=0,

解得:x=2.

故答案為:2.【點睛】本題考查了運用待定系數法求一次函數的解析式的運用,由函數值求自變量的值的運用,解答時求出函數的解析式是關鍵.17、1或-1【解析】

根據a?b=(a+b)b,列出關于x的方程(2+x)x=1,解方程即可.【詳解】依題意得:(2+x)x=1,整理,得x2+2x=1,所以(x+1)2=4,所以x+1=±2,所以x=1或x=-1.故答案是:1或-1.【點睛】用配方法解一元二次方程的步驟:①把原方程化為ax2+bx+c=0(a≠0)的形式;②方程兩邊同除以二次項系數,使二次項系數為1,并把常數項移到方程右邊;③方程兩邊同時加上一次項系數一半的平方;④把左邊配成一個完全平方式,右邊化為一個常數;⑤如果右邊是非負數,就可以進一步通過直接開平方法來求出它的解,如果右邊是一個負數,則判定此方程無實數解.18、5:1【解析】

根據題意作出合適的輔助線,然后根據三角形相似即可解答本題.【詳解】解:作AE∥BC交DC于點E,交DF于點F,設每個小正方形的邊長為a,則△DEF∽△DCN,∴==,∴EF=a,∵AF=2a,∴AE=a,∵△AME∽△BMC,∴===,故答案為:5:1.【點睛】本題考查相似三角形的判定與性質,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、問題拓展:(x﹣a)1+(y﹣b)1=r1綜合應用:①見解析②點Q的坐標為(4,3),方程為(x﹣4)1+(y﹣3)1=15.【解析】試題分析:問題拓展:設A(x,y)為⊙P上任意一點,則有AP=r,根據閱讀材料中的兩點之間距離公式即可求出⊙P的方程;綜合應用:①由PO=PA,PD⊥OA可得∠OPD=∠APD,從而可證到△POB≌△PAB,則有∠POB=∠PAB.由⊙P與x軸相切于原點O可得∠POB=90°,即可得到∠PAB=90°,由此可得AB是⊙P的切線;②當點Q在線段BP中點時,根據直角三角形斜邊上的中線等于斜邊的一半可得QO=QP=BQ=AQ.易證∠OBP=∠POA,則有tan∠OBP==.由P點坐標可求出OP、OB.過點Q作QH⊥OB于H,易證△BHQ∽△BOP,根據相似三角形的性質可求出QH、BH,進而求出OH,就可得到點Q的坐標,然后運用問題拓展中的結論就可解決問題.試題解析:解:問題拓展:設A(x,y)為⊙P上任意一點,∵P(a,b),半徑為r,∴AP1=(x﹣a)1+(y﹣b)1=r1.故答案為(x﹣a)1+(y﹣b)1=r1;綜合應用:①∵PO=PA,PD⊥OA,∴∠OPD=∠APD.在△POB和△PAB中,,∴△POB≌△PAB,∴∠POB=∠PAB.∵⊙P與x軸相切于原點O,∴∠POB=90°,∴∠PAB=90°,∴AB是⊙P的切線;②存在到四點O,P,A,B距離都相等的點Q.當點Q在線段BP中點時,∵∠POB=∠PAB=90°,∴QO=QP=BQ=AQ.此時點Q到四點O,P,A,B距離都相等.∵∠POB=90°,OA⊥PB,∴∠OBP=90°﹣∠DOB=∠POA,∴tan∠OBP==tan∠POA=.∵P點坐標為(0,6),∴OP=6,OB=OP=3.過點Q作QH⊥OB于H,如圖3,則有∠QHB=∠POB=90°,∴QH∥PO,∴△BHQ∽△BOP,∴===,∴QH=OP=3,BH=OB=4,∴OH=3﹣4=4,∴點Q的坐標為(4,3),∴OQ==5,∴以Q為圓心,以OQ為半徑的⊙O的方程為(x﹣4)1+(y﹣3)1=15.考點:圓的綜合題;全等三角形的判定與性質;等腰三角形的性質;直角三角形斜邊上的中線;勾股定理;切線的判定與性質;相似三角形的判定與性質;銳角三角函數的定義.20、(1)MN與AB的關系是:MN⊥AB,MN=AB,(2)2,4;(2)①y=x2﹣2;②在此拋物線的對稱軸上有這樣的點P,使得∠APB為銳角,yp的取值范圍是yp<﹣2或yp>2.【解析】

(1)直接利用等腰直角三角形的性質分析得出答案;(2)利用已知點為B(m,m),代入拋物線解析式進而得出m的值,即可得出AB的值;(2)①根據題意得出拋物線必過(2,0),進而代入求出答案;②根據y=x2﹣2的對稱軸上P(0,2),P(0,﹣2)時,∠APB為直角,進而得出答案.【詳解】(1)MN與AB的關系是:MN⊥AB,MN=AB,如圖1,∵△AMB是等腰直角三角形,且N為AB的中點,∴MN⊥AB,MN=AB,故答案為MN⊥AB,MN=AB;(2)∵拋物線y=對應的準蝶形必經過B(m,m),∴m=m2,解得:m=2或m=0(不合題意舍去),當m=2則,2=x2,解得:x=±2,則AB=2+2=4;故答案為2,4;(2)①由已知,拋物線對稱軸為:y軸,∵拋物線y=ax2﹣4a﹣(a>0)對應的碟寬在x軸上,且AB=1.∴拋物線必過(2,0),代入y=ax2﹣4a﹣(a>0),得,9a﹣4a﹣=0,解得:a=,∴拋物線的解析式是:y=x2﹣2;②由①知,如圖2,y=x2﹣2的對稱軸上P(0,2),P(0,﹣2)時,∠APB為直角,∴在此拋物線的對稱軸上有這樣的點P,使得∠APB為銳角,yp的取值范圍是yp<﹣2或yp>2.【點睛】此題主要考查了二次函數綜合以及等腰直角三角形的性質,正確應用等腰直角三角形的性質是解題關鍵.21、(1)拋物線的解析式為:y=﹣x1+x+1(1)存在,P1(,2),P1(,),P3(,﹣)(3)當點E運動到(1,1)時,四邊形CDBF的面積最大,S四邊形CDBF的面積最大=.【解析】試題分析:(1)將點A、C的坐標分別代入可得二元一次方程組,解方程組即可得出m、n的值;(1)根據二次函數的解析式可得對稱軸方程,由勾股定理求出CD的值,以點C為圓心,CD為半徑作弧交對稱軸于P1;以點D為圓心CD為半徑作圓交對稱軸于點P1,P3;作CH垂直于對稱軸與點H,由等腰三角形的性質及勾股定理就可以求出結論;(3)由二次函數的解析式可求出B點的坐標,從而可求出BC的解析式,從而可設設E點的坐標,進而可表示出F的坐標,由四邊形CDBF的面積=S△BCD+S△CEF+S△BEF可求出S與a的關系式,由二次函數的性質就可以求出結論.試題解析:(1)∵拋物線y=﹣x1+mx+n經過A(﹣1,0),C(0,1).解得:,∴拋物線的解析式為:y=﹣x1+x+1;(1)∵y=﹣x1+x+1,∴y=﹣(x﹣)1+,∴拋物線的對稱軸是x=.∴OD=.∵C(0,1),∴OC=1.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD為腰的等腰三角形,∴CP1=CP1=CP3=CD.作CH⊥x軸于H,∴HP1=HD=1,∴DP1=2.∴P1(,2),P1(,),P3(,﹣);(3)當y=0時,0=﹣x1+x+1∴x1=﹣1,x1=2,∴B(2,0).設直線BC的解析式為y=kx+b,由圖象,得,解得:,∴直線BC的解析式為:y=﹣x+1.如圖1,過點C作CM⊥EF于M,設E(a,﹣a+1),F(a,﹣a1+a+1),∴EF=﹣a1+a+1﹣(﹣a+1)=﹣a1+1a(0≤x≤2).∵S四邊形CDBF=S△BCD+S△CEF+S△BEF=BD?OC+EF?CM+EF?BN,=+a(﹣a1+1a)+(2﹣a)(﹣a1+1a),=﹣a1+2a+(0≤x≤2).=﹣(a﹣1)1+∴a=1時,S四邊形CDBF的面積最大=,∴E(1,1).考點:1、勾股定理;1、等腰三角形的性質;3、四邊形的面積;2、二次函數的最值22、(1)72°,見解析;(2)7280;(3)16【解析】

(1)根據題意列式計算,補全條形統計圖即可;(2)根據題意列式計算即可;(3)畫樹狀圖得出所有等可能的情況數,找出選到成活率較高的兩類樹苗的情況數,即可求出所求的概率.【詳解】(1)扇形統計圖中玉蘭所對的圓心角為360°×(1-40%-15%-25%)=72°月季的株數為2000×90%-380-422-270=728(株),補全條形統計圖如圖所示:(2)月季的成活率為728所以月季成活株數為8000×91%=7280(株).故答案為:7280.(3)由題意知,成活率較高的兩類花苗是玉蘭和月季,玉蘭、月季、桂花、臘梅分別用A、B、C、D表示,畫樹狀圖如下:所有等可能的情況有12種,其中恰好選到成活率較高的兩類花苗有2種.∴P(恰好選到成活率較高的兩類花苗)=【點睛】此題主要考查了條形統計圖以及扇形統計圖的應用,根據統計圖得出正確信息是解題關鍵.23、(1);(2)不能成為平行四邊形,理由見解析【解析】

(1)將點B坐標代入一次函數上可得出點B的坐標,由點B的坐標,利用待定系數法可求出反比例函數解析式,根據點的坐標為,可以判斷出,再由點P的橫坐標可得出點P的坐標是,結合PD∥x軸可得出點D的坐標,再利用三角形的面積公式即可用含的式子表示出△MPD的面積;

(2)當P為BM的中點時,利用中點坐標公式可得出點P的坐標,結合PD∥x軸可得出點D的坐標,由折疊的性質可得出直線MN的解析式,利用一次函數圖象上點的坐標特征可得出點C的坐標,由點P,C,D的坐標可得出PD≠PC,由此即可得出四邊形BDMC不能成為平行四邊形.【詳解】解:(1)∵點在直線上,∴.∵點在的圖像上,∴,∴.設,則.∵∴.記的面積為,∴.(2)當點為中點時,其坐標為,∴.∵直線在軸下方的部分沿軸翻折得表示的函數表達式是:,∴,∴,∴與不能互相平分,∴四邊形不能成為平行四邊形.【點睛】本題考查了一次函數圖象上點的坐標特征、待定系數法求反比例函數解析式、反比例函數圖象上點的坐標特征、三角形的面積、折疊的性質以及平行四邊形的判定,解題的關鍵是:(1)利用一次(反比例)函數圖象上點的坐標特征,找出點P,M,D的坐標;(2)利用平行四邊形的對角線互相平分,找出四邊形BDMC不能成為平行四邊形.24、(1)能,見解析;(2)見解析.【解析】

(1)直接利用菱形的判定方法分析得出答案;

(2)直接利用全等三角形的判定與性質得出EO=FO,進而得出答案.【詳解】解:(1)能;該同學錯在AC和EF并不是互相平分的,EF垂直平分AC,但未證明AC垂直平分EF,需要通過證明得出;(2)證明:∵四邊形ABCD是平行四邊形,∴AD∥BC.∴∠FAC=∠ECA.∵EF是AC的垂直平分線,∴OA=OC.∵在△AOF與△COE中,,∴△AOF≌△COE(ASA).∴EO=FO.∴AC垂直平分EF.∴EF與AC互相垂直平分.∴四邊形AECF是菱形.【點睛】本題主要考查了平行四邊形的性質,菱形的判定,全等三角形的判定與性質,正確得出全等三角形是解題關鍵.25、發現:(1)1,60°;(2)2;拓展:(1)相切,理由詳見解析;(2)45°;30°;(3)0°<α<30°或45°≤α<90°.【解析】

發現:(1)利用垂徑定理和勾股定理即可求出點O到AB的距離;利用銳角三角函數的定義及軸對稱性就可求出∠ABA′.(2)根據切線的性質得到∠OBA′=90°,從而得到∠ABA′=120°,就可求出∠ABP,進而求出∠OBP=30°.過點O作OG⊥BP,垂足為G,容易求出OG、BG的長,根據垂徑定理就可求出折痕的長.拓展:(1)過A'、O作A'H⊥MN于點H,OD⊥A'C于點D.用含30°角的直角三角形的性質可得OD=A'H=A'N=MN=2可判定A′C與半圓相切;(2)當NA′與半圓相切時,可知ON⊥A′N,則可知α=45°,當O′在時,連接MO′,則可知NO′=MN,可求得∠MNO′=60°,可求得α=30°;(3)根據點A′的位置不同得到線段NO′與半圓O只有一個公共點N時α的取值范圍是0°<α<30°或45°≤α<90°.【詳解】發現:(1)過點O作OH⊥AB,垂足為H,如圖1所示,∵⊙O的半徑為2,AB=2,∴OH==在△BOH中,OH=1,BO=2∴∠ABO=30°∵圖形沿BP折疊,得到點A的對稱點A′.∴∠OBA′=∠ABO=30°∴∠ABA′=60°(2)過點O作OG⊥BP,垂足為G,如圖2所示.∵BA′與⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=OB=1.∴BG=.∵OG⊥BP,∴BG=PG=.∴BP=2.∴折痕的長為2拓展:(1)相切.分別過A'、O作A'H⊥MN于點H,OD⊥A'C于點D.如圖3所示,∵A'C∥MN∴四邊形A'HOD是矩形∴A'H=O∵α=15°∴∠A'NH=30∴OD=A'H=A'N=MN=2∴A'C與半圓(2)當NA′與半圓O相切時,則ON⊥NA′,∴∠ONA′=2α=90°,∴α=45當O′在上時,連接MO′,則可知NO′=MN,∴∠O′MN=0°∴∠MNO′=60°,∴α=30°,故答案為:45°;30°.(3)∵點P,M不重合,∴α>0,由(2)可知當α增大到30°時,點O′在半圓上,∴當0°<α<30°時點O′在半圓內,線段NO′與半圓只有一個公共點B;當α增大到45°時NA′與半圓相切,即線段NO′與半圓只有一個公共點B.當α繼續增大時,點P逐漸靠近點N,但是點P,N不重合,∴α<90°,∴當45°≤α<90°線段BO′與半圓只有一個公共點B.綜上所述0°<α<30°或45°≤α<90°.【點睛】本題考查了切線的性質、垂徑定理、勾股定理、三角函數的定義、30°角所對的直角邊等于斜邊的一半、翻折問題等知識,正確的作出輔助線是解題的關鍵.26、(1);(2)(,0);(3)1,M(2,﹣3).【解析】試題分析:方法一:(1)該函數解析式只有一個待定系數,只需將B點坐標代入解析式中即可.(2)首先根據拋物線的解析式確定A點坐標,然后通過證明△ABC是直角三角形來推導出直徑AB和圓心的位置,由此確定圓心坐標.(3)△MBC的面積可由S△MBC=BC×h表示,若要它的面積最大,需要使h取最大值,即點M到直線BC的距離最大,若設一條平行于BC的直線,那么當該直線與拋物線有且只有一個交點時,該交點就是點M.方法二:(1)該函數解析式只有一個待定系數,只需將B點坐標代入解析式中即可.(2)通過求出A,B,C三點坐標,利用勾股定理或利用斜率垂直公式可求出AC⊥BC,從而求出圓心坐標.(3)利用三角形面積公式,過M點作x軸垂線,水平底與鉛垂高乘積的一半,得出△MBC的面積函數,從而求出M點.試題解析:解:方法一:(1)將B(1,0)代入拋物線的解析式中,得:0=16a﹣×1﹣2,即:a=,∴拋物線的解析式為:.(2)由(1)的函數解析式可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=1,即:OC2=OA?OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC為直角三角形,AB為△ABC外接圓的直徑;所以該外

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論