2022-2023學年天津市達標名校中考試題猜想數學試卷含解析_第1頁
2022-2023學年天津市達標名校中考試題猜想數學試卷含解析_第2頁
2022-2023學年天津市達標名校中考試題猜想數學試卷含解析_第3頁
2022-2023學年天津市達標名校中考試題猜想數學試卷含解析_第4頁
2022-2023學年天津市達標名校中考試題猜想數學試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,在以O為原點的直角坐標系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(x>0)與AB相交于點D,與BC相交于點E,若BD=3AD,且△ODE的面積是9,則k的值是()A. B. C. D.122.已知一次函數y=kx+b的圖象如圖,那么正比例函數y=kx和反比例函數y=在同一坐標系中的圖象的形狀大致是()A. B.C. D.3.如圖是二次函數y=ax2+bx+c(a,b,c是常數,a≠0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數);⑤當﹣1<x<3時,y>0,其中正確的是()A.①②④ B.①②⑤ C.②③④ D.③④⑤4.為了紀念物理學家費米,物理學界以費米(飛米)作為長度單位.已知1飛米等于0.000000000000001米,把0.000000000000001這個數用科學記數法表示為()A.1×10﹣15 B.0.1×10﹣14 C.0.01×10﹣13 D.0.01×10﹣125.如圖,以∠AOB的頂點O為圓心,適當長為半徑畫弧,交OA于點C,交OB于點D.再分別以點C、D為圓心,大于CD的長為半徑畫弧,兩弧在∠AOB內部交于點E,過點E作射線OE,連接CD.則下列說法錯誤的是A.射線OE是∠AOB的平分線B.△COD是等腰三角形C.C、D兩點關于OE所在直線對稱D.O、E兩點關于CD所在直線對稱6.某種計算器標價240元,若以8折優惠銷售,仍可獲利20%,那么這種計算器的進價為()A.152元 B.156元 C.160元 D.190元7.商場將某種商品按原價的8折出售,仍可獲利20元.已知這種商品的進價為140元,那么這種商品的原價是()A.160元B.180元C.200元D.220元8.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=40°,則∠2的度數為()A.50° B.40° C.30° D.25°9.(2016福建省莆田市)如圖,OP是∠AOB的平分線,點C,D分別在角的兩邊OA,OB上,添加下列條件,不能判定△POC≌△POD的選項是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD10.如圖,在△ABC中,AB=AC=10,CB=16,分別以AB、AC為直徑作半圓,則圖中陰影部分面積是()A.50π﹣48 B.25π﹣48 C.50π﹣24 D.二、填空題(本大題共6個小題,每小題3分,共18分)11.計算a10÷a5=_______.12.一個斜面的坡度i=1:0.75,如果一個物體從斜面的底部沿著斜面方向前進了20米,那么這個物體在水平方向上前進了_____米.13.如圖,在?ABCD中,E、F分別是AB、DC邊上的點,AF與DE相交于點P,BF與CE相交于點Q,若S△APD=16cm1,S△BQC=15cm1,則圖中陰影部分的面積為_____cm1.14.如圖,△ABC是⊙O的內接三角形,AD是⊙O的直徑,∠ABC=50°,則∠CAD=________

.15.計算:___.16.化簡的結果等于__.三、解答題(共8題,共72分)17.(8分)如圖,將一張直角三角形ABC紙片沿斜邊AB上的中線CD剪開,得到△ACD,再將△ACD沿DB方向平移到△A′C′D′的位置,若平移開始后點D′未到達點B時,A′C′交CD于E,D′C′交CB于點F,連接EF,當四邊形EDD′F為菱形時,試探究△A′DE的形狀,并判斷△A′DE與△EFC′是否全等?請說明理由.18.(8分)在⊙O中,弦AB與弦CD相交于點G,OA⊥CD于點E,過點B作⊙O的切線BF交CD的延長線于點F.(I)如圖①,若∠F=50°,求∠BGF的大小;(II)如圖②,連接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大小.19.(8分)如圖,在平面直角坐標系中,已知△AOB是等邊三角形,點A的坐標是(0,4),點B在一象限,點P(t,0)是x軸上的一個動點,連接AP,并把△AOP繞著點A按逆時針方向旋轉,使邊AO與AB重合,連接OD,PD,得△OPD。(1)當t=時,求DP的長(2)在點P運動過程中,依照條件所形成的△OPD面積為S①當t>0時,求S與t之間的函數關系式②當t≤0時,要使s=,請直接寫出所有符合條件的點P的坐標.20.(8分)為了解朝陽社區歲居民最喜歡的支付方式,某興趣小組對社區內該年齡段的部分居民展開了隨機問卷調查(每人只能選擇其中一項),并將調查數據整理后繪成如下兩幅不完整的統計圖.請根據圖中信息解答下列問題:求參與問卷調查的總人數.補全條形統計圖.該社區中歲的居民約8000人,估算這些人中最喜歡微信支付方式的人數.21.(8分)如圖,矩形中,對角線,相交于點,且,.動點,分別從點,同時出發,運動速度均為lcm/s.點沿運動,到點停止.點沿運動,點到點停留4后繼續運動,到點停止.連接,,,設的面積為(這里規定:線段是面積為0的三角形),點的運動時間為.(1)求線段的長(用含的代數式表示);(2)求時,求與之間的函數解析式,并寫出的取值范圍;(3)當時,直接寫出的取值范圍.22.(10分)甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發4分鐘,在整個步行過程中,甲、乙兩人間的距離y(米)與甲出發的時間x(分)之間的關系如圖中折線OA-AB-BC-CD所示.(1)求線段AB的表達式,并寫出自變量x的取值范圍;(2)求乙的步行速度;(3)求乙比甲早幾分鐘到達終點?23.(12分)小強的媽媽想在自家的院子里用竹籬笆圍一個面積為4平方米的矩形小花園,媽媽問九年級的小強至少需要幾米長的竹籬笆(不考慮接縫).小強根據他學習函數的經驗做了如下的探究.下面是小強的探究過程,請補充完整:建立函數模型:設矩形小花園的一邊長為x米,籬笆長為y米.則y關于x的函數表達式為________;列表(相關數據保留一位小數):根據函數的表達式,得到了x與y的幾組值,如下表:x0.511.522.533.544.55y17108.38.28.79.310.811.6描點、畫函數圖象:如圖,在平面直角坐標系xOy中,描出了以上表中各對對應值為坐標的點,根據描出的點畫出該函數的圖象;觀察分析、得出結論:根據以上信息可得,當x=________時,y有最小值.由此,小強確定籬笆長至少為________米.24.某校學生會準備調查六年級學生參加“武術類”、“書畫類”、“棋牌類”、“器樂類”四類校本課程的人數.(1)確定調查方式時,甲同學說:“我到六年級(1)班去調查全體同學”;乙同學說:“放學時我到校門口隨機調查部分同學”;丙同學說:“我到六年級每個班隨機調查一定數量的同學”.請指出哪位同學的調查方式最合理.類別頻數(人數)頻率武術類0.25書畫類200.20棋牌類15b器樂類合計a1.00(2)他們采用了最為合理的調查方法收集數據,并繪制了如圖所示的統計表和扇形統計圖.請你根據以上圖表提供的信息解答下列問題:①a=_____,b=_____;②在扇形統計圖中,器樂類所對應扇形的圓心角的度數是_____;③若該校六年級有學生560人,請你估計大約有多少學生參加武術類校本課程.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

設B點的坐標為(a,b),由BD=3AD,得D(,b),根據反比例函數定義求出關鍵點坐標,根據S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=9求出k.【詳解】∵四邊形OCBA是矩形,∴AB=OC,OA=BC,設B點的坐標為(a,b),∵BD=3AD,∴D(,b),∵點D,E在反比例函數的圖象上,∴=k,∴E(a,

),∵S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=ab-?-?-??(b-)=9,∴k=,故選:C【點睛】考核知識點:反比例函數系數k的幾何意義.結合圖形,分析圖形面積關系是關鍵.2、C【解析】試題分析:如圖所示,由一次函數y=kx+b的圖象經過第一、三、四象限,可得k>1,b<1.因此可知正比例函數y=kx的圖象經過第一、三象限,反比例函數y=的圖象經過第二、四象限.綜上所述,符合條件的圖象是C選項.故選C.考點:1、反比例函數的圖象;2、一次函數的圖象;3、一次函數圖象與系數的關系3、A【解析】

由拋物線的開口方向判斷a與2的關系,由拋物線與y軸的交點判斷c與2的關系,然后根據對稱軸判定b與2的關系以及2a+b=2;當x=﹣1時,y=a﹣b+c;然后由圖象確定當x取何值時,y>2.【詳解】①∵對稱軸在y軸右側,∴a、b異號,∴ab<2,故正確;②∵對稱軸∴2a+b=2;故正確;③∵2a+b=2,∴b=﹣2a,∵當x=﹣1時,y=a﹣b+c<2,∴a﹣(﹣2a)+c=3a+c<2,故錯誤;④根據圖示知,當m=1時,有最大值;當m≠1時,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m為實數).故正確.⑤如圖,當﹣1<x<3時,y不只是大于2.故錯誤.故選A.【點睛】本題主要考查了二次函數圖象與系數的關系,關鍵是熟練掌握①二次項系數a決定拋物線的開口方向,當a>2時,拋物線向上開口;當a<2時,拋物線向下開口;②一次項系數b和二次項系數a共同決定對稱軸的位置:當a與b同號時(即ab>2),對稱軸在y軸左;當a與b異號時(即ab<2),對稱軸在y軸右.(簡稱:左同右異)③常數項c決定拋物線與y軸交點,拋物線與y軸交于(2,c).4、A【解析】

根據科學記數法的表示方法解答.【詳解】解:把這個數用科學記數法表示為.故選:.【點睛】此題重點考查學生對科學記數法的應用,熟練掌握小于0的數用科學記數法表示法是解題的關鍵.5、D【解析】試題分析:A、連接CE、DE,根據作圖得到OC=OD,CE=DE.∵在△EOC與△EOD中,OC=OD,CE=DE,OE=OE,∴△EOC≌△EOD(SSS).∴∠AOE=∠BOE,即射線OE是∠AOB的平分線,正確,不符合題意.B、根據作圖得到OC=OD,∴△COD是等腰三角形,正確,不符合題意.C、根據作圖得到OC=OD,又∵射線OE平分∠AOB,∴OE是CD的垂直平分線.∴C、D兩點關于OE所在直線對稱,正確,不符合題意.D、根據作圖不能得出CD平分OE,∴CD不是OE的平分線,∴O、E兩點關于CD所在直線不對稱,錯誤,符合題意.故選D.6、C【解析】【分析】設進價為x元,依題意得240×0.8-x=20x℅,解方程可得.【詳解】設進價為x元,依題意得240×0.8-x=20x℅解得x=160所以,進價為160元.故選C【點睛】本題考核知識點:列方程解應用題.解題關鍵點:找出相等關系.7、C【解析】

利用打折是在標價的基礎之上,利潤是在進價的基礎上,進而得出等式求出即可.【詳解】解:設原價為x元,根據題意可得:80%x=140+20,解得:x=1.所以該商品的原價為1元;故選:C.【點睛】此題主要考查了一元一次方程的應用,根據題意列出方程是解決問題的關鍵.8、A【解析】

由兩直線平行,同位角相等,可求得∠3的度數,然后求得∠2的度數.【詳解】如圖,∵∠1=40°,∴∠3=∠1=40°,∴∠2=90°-40°=50°.故選A.【點睛】此題考查了平行線的性質.利用兩直線平行,同位角相等是解此題的關鍵.9、D【解析】試題分析:對于A,由PC⊥OA,PD⊥OB得出∠PCO=∠PDO=90°,根據AAS判定定理可以判定△POC≌△POD;對于BOC=OD,根據SAS判定定理可以判定△POC≌△POD;對于C,∠OPC=∠OPD,根據ASA判定定理可以判定△POC≌△POD;,對于D,PC=PD,無法判定△POC≌△POD,故選D.考點:角平分線的性質;全等三角形的判定.10、B【解析】

設以AB、AC為直徑作半圓交BC于D點,連AD,如圖,∴AD⊥BC,∴BD=DC=BC=8,而AB=AC=10,CB=16,∴AD===6,∴陰影部分面積=半圓AC的面積+半圓AB的面積﹣△ABC的面積,=π?52﹣?16?6,=25π﹣1.故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、a1.【解析】試題分析:根據同底數冪的除法底數不變指數相減,可得答案.原式=a10-1=a1,故答案為a1.考點:同底數冪的除法.12、1.【解析】

直接根據題意得出直角邊的比值,即可表示出各邊長進而得出答案.【詳解】如圖所示:∵坡度i=1:0.75,∴AC:BC=1:0.75=4:3,∴設AC=4x,則BC=3x,∴AB==5x,∵AB=20m,∴5x=20,解得:x=4,故3x=1,故這個物體在水平方向上前進了1m.故答案為:1.【點睛】此題主要考查坡度的運用,需注意的是坡度是坡角的正切值,是鉛直高度h和水平寬l的比,我們把斜坡面與水平面的夾角叫做坡角,若用α表示坡角,可知坡度與坡角的關系是.13、41【解析】試題分析:如圖,連接EF∵△ADF與△DEF同底等高,∴S△ADF=S△DEF,即S△ADF-S△DPF=S△DEF-S△DPF,即S△APD=S△EPF=16cm1,同理可得S△BQC=S△EFQ=15cm1,、∴陰影部分的面積為S△EPF+S△EFQ=16+15=41cm1.考點:1、三角形面積,1、平行四邊形14、40°【解析】連接CD,則∠ADC=∠ABC=50°,∵AD是⊙O的直徑,∴∠ACD=90°,∴∠CAD+∠ADC=90°,∴∠CAD=90°-∠ADC=90°-50°=40°,故答案為:40°.15、【解析】

直接利用負指數冪的性質以及零指數冪的性質分別化簡得出答案.【詳解】原式.故答案為.【點睛】本題考查了實數運算,正確化簡各數是解題的關鍵.16、.【解析】

先通分變為同分母分式,然后根據分式的減法法則計算即可.【詳解】解:原式.故答案為:.【點睛】此題考查的是分式的減法,掌握分式的減法法則是解決此題的關鍵.三、解答題(共8題,共72分)17、△A′DE是等腰三角形;證明過程見解析.【解析】試題分析:當四邊形EDD′F為菱形時,△A′DE是等腰三角形,△A′DE≌△EFC′.先證明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判斷△DA′E的形狀.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根據A′D=DE=EF即可證明.試題解析:當四邊形EDD′F為菱形時,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四邊形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠CEF=∠DA′E,∠EFC=∠CD′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C=∠EFC,在△A′DE和△EFC′中,∠EA∴△A′DE≌△EFC′.考點:1.菱形的性質;2.全等三角形的判定;3.平移的性質.18、(I)65°;(II)72°【解析】

(I)如圖①,連接OB,先利用切線的性質得∠OBF=90°,而OA⊥CD,所以∠OED=90°,利用四邊形內角和可計算出∠AOB=130°,然后根據等腰三角形性質和三角形內角和計算出∠1=∠A=25°,從而得到∠2=65°,最后利用三角形內角和定理計算∠BGF的度數;(II)如圖②,連接OB,BO的延長線交AC于H,利用切線的性質得OB⊥BF,再利用AC∥BF得到BH⊥AC,與(Ⅰ)方法可得到∠AOB=144°,從而得到∠OBA=∠OAB=18°,接著計算出∠OAH=54°,然后根據圓周角定理得到∠BDG的度數.【詳解】解:(I)如圖①,連接OB,∵BF為⊙O的切線,∴OB⊥BF,∴∠OBF=90°,∵OA⊥CD,∴∠OED=90°,∴∠AOB=180°﹣∠F=180°﹣50°=130°,∵OA=OB,∴∠1=∠A=(180°﹣130°)=25°,∴∠2=90°﹣∠1=65°,∴∠BGF=180°﹣∠2﹣∠F=180°﹣65°﹣50°=65°;(II)如圖②,連接OB,BO的延長線交AC于H,∵BF為⊙O的切線,∴OB⊥BF,∵AC∥BF,∴BH⊥AC,與(Ⅰ)方法可得到∠AOB=180°﹣∠F=180°﹣36°=144°,∵OA=OB,∴∠OBA=∠OAB=(180°﹣144°)=18°,∵∠AOB=∠OHA+∠OAH,∴∠OAH=144°﹣90°=54°,∴∠BAC=∠OAH+∠OAB=54°+18°=72°,∴∠BDG=∠BAC=72°.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.若出現圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.也考查了圓周角定理.19、(1)DP=;(2)①;②.【解析】

(1)先判斷出△ADP是等邊三角形,進而得出DP=AP,即可得出結論;

(2)①先求出GH=2,進而求出DG,再得出DH,即可得出結論;

②分兩種情況,利用三角形的面積建立方程求解即可得出結論.【詳解】解:(1)∵A(0,4),

∴OA=4,

∵P(t,0),

∴OP=t,

∵△ABD是由△AOP旋轉得到,

∴△ABD≌△AOP,

∴AP=AD,∠DAB=∠PAO,

∴∠DAP=∠BAO=60°,

∴△ADP是等邊三角形,

∴DP=AP,

∵,

∴,

∴;(2)①當t>0時,如圖1,BD=OP=t,

過點B,D分別作x軸的垂線,垂足于F,H,過點B作x軸的平行線,分別交y軸于點E,交DH于點G,

∵△OAB為等邊三角形,BE⊥y軸,

∴∠ABP=30°,AP=OP=2,

∵∠ABD=90°,

∴∠DBG=60°,

∴DG=BD?sin60°=,

∵GH=OE=2,

∴,

∴;②當t≤0時,分兩種情況:

∵點D在x軸上時,如圖2在Rt△ABD中,,

(1)當時,如圖3,BD=OP=-t,,∴,

∴,

∴或,

∴或,

(2)當時,如圖4,BD=OP=-t,,

∴,

∴∴或(舍)∴.【點睛】此題是幾何變換綜合題,主要考查了全等三角形的判定和性質,旋轉的性質,三角形的面積公式以及解直角三角形,正確作出輔助線是解決本題的關鍵.20、(1)參與問卷調查的總人數為500人;(2)補全條形統計圖見解析;(3)這些人中最喜歡微信支付方式的人數約為2800人.【解析】

(1)根據喜歡支付寶支付的人數÷其所占各種支付方式的比例=參與問卷調查的總人數,即可求出結論;

(2)根據喜歡現金支付的人數(41~60歲)=參與問卷調查的總人數×現金支付所占各種支付方式的比例-15,即可求出喜歡現金支付的人數(41~60歲),再將條形統計圖補充完整即可得出結論;

(3)根據喜歡微信支付方式的人數=社區居民人數×微信支付所占各種支付方式的比例,即可求出結論.【詳解】(1)(人.答:參與問卷調查的總人數為500人.(2)(人.補全條形統計圖,如圖所示.(3)(人.答:這些人中最喜歡微信支付方式的人數約為2800人.【點睛】本題考查了條形統計圖、扇形統計圖以及用樣本估計總體,解題的關鍵是:(1)觀察統計圖找出數據,再列式計算;(2)通過計算求出喜歡現金支付的人數(41~60歲);(3)根據樣本的比例×總人數,估算出喜歡微信支付方式的人數.21、(1)當0<x≤1時,PD=1-x,當1<x≤14時,PD=x-1.(2)y=;(3)5≤x≤9【解析】

(1)分點P在線段CD或在線段AD上兩種情形分別求解即可.

(2)分三種情形:①當5≤x≤1時,如圖1中,根據y=S△DPB,求解即可.②當1<x≤9時,如圖2中,根據y=S△DPB,求解即可.③9<x≤14時,如圖3中,根據y=S△APQ+S△ABQ-S△PAB計算即可.

(3)根據(2)中結論即可判斷.【詳解】解:(1)當0<x≤1時,PD=1-x,

當1<x≤14時,PD=x-1.

(2)①當5≤x≤1時,如圖1中,

∵四邊形ABCD是矩形,

∴OD=OB,

∴y=S△DPB=×?(1-x)?6=(1-x)=12-x.

②當1<x≤9時,如圖2中,y=S△DPB=×(x-1)×1=2x-2.

③9<x≤14時,如圖3中,y=S△APQ+S△ABQ-S△PAB=?(14-x)?(x-4)+×1×(tx-4)-×1×(14-x)=-x2+x-11.

綜上所述,y=.

(3)由(2)可知:當5≤x≤9時,y=S△BDP.【點睛】本題屬于四邊形綜合題,考查了矩形的性質,三角形的面積等知識,解題的關鍵是理解題意,學會用分類討論的思想思考問題,屬于中考常考題型.22、(1);(2)80米/分;(3)6分鐘【解析】

(1)根據圖示,設線段AB的表達式為:y=kx+b,把把(4,240),(16,0)代入得到關于k,b的二元一次方程組,解之,即可得到答案,

(2)根據線段OA,求出甲的速度,根據圖示可知:乙在點B處追上甲,根據速度=路程÷時間,計算求值即可,

(3)根據圖示,求出二者相遇時與出發點的距離,進而求出與終點的距離,結合(2)的結果,分別計算出相遇后,到達終點甲和乙所用的時間,二者的時間

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論