用于英文字母識別的三種人工神經網絡的設計_第1頁
用于英文字母識別的三種人工神經網絡的設計_第2頁
用于英文字母識別的三種人工神經網絡的設計_第3頁
免費預覽已結束,剩余2頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

用于英文字母識別的三種人工神經網絡的設計

摘要分別采用單層感知器、BP網絡和霍普菲爾德網絡三種神經網絡對26個英文字母進行識別,通過實驗給出各網絡的識別出錯率,從中可以看出三種人工神經網絡各自的優缺點,為選擇神經網絡進行字符識別提供了一定的依據。關鍵詞性能對比感知器BP網絡霍普菲爾德網絡字符識別1引言人工神經網絡是在人類對其大腦神經網絡認識理解的基礎上人工構造的能夠實現某種功能的神經網絡。代寫論文它是理論化的人腦神經網絡的數學模型,是基于模仿大腦神經網絡結構和功能而建立的一種信息處理系統。因其自組織、自學習能力以及具有信息的分布式存儲和并行處理,信息存儲與處理的合一等特點得到了廣泛的關注,已經發展了上百種人工神經網絡。一般來說,人工神經網絡從結構上可分為兩種:前向網絡和反饋網絡。典型的前向網絡有單層感知器、BP網絡等,反饋網絡有霍普菲爾德網絡等[1]。人工神經網絡已經被廣泛應用于模式識別、信號處理、專家系統、優化組合、智能控制等各個方面,其中采用人工神經網絡進行模式識別具有一些傳統技術所沒有的優點:良好的容錯能力[2j、分類能力、并行處理能力和自學習能力,并且其運行速度快,自適應性能好,具有較高的分辨率。單層感知器、BP網絡和霍普菲爾德網絡均可以用于字符識別。本文通過具體采用感知器網絡、BP網絡和霍普菲爾德反饋網絡對26個英文字母進行識別的應用,通過實驗給出各自的識別出錯率,通過比較,可以看出這3種神經網絡的識別能力以及各自的優缺點。2字符識別問題描述與網絡識別前的預處理字符識別在現代日常生活的應用越來越廣泛,比如車輛牌照自動識別系統[3,4],手寫識別系統[5],辦公自動化等等[6]。代寫畢業論文本文采用單層感知器、BP網絡和霍普菲爾德網絡對26個英文字母進行識別。首先將待識別的26個字母中的每一個字母都通過長和寬分別為7×5的方格進行數字化處理,并用一個向量表示。其相應有數據的位置置為1,其他位置置為O。圖1給出了字母A、B和C的數字化過程,其中最左邊的為字母A的數字化處理結果所得對應的向量為:IetterA~「00100010100101010001111111000110001〕’,由此可得每個字母由35個元素組成一個向量。由26個標準字母組成的輸人向量被定義為一個輸人向量矩陣alphabet,即神經網絡的樣本輸人為一個35×26的矩陣。其中alphabet=[letterA,letterB,lettere,……letterZj。網絡樣本輸出需要一個對26個輸人字母進行區分輸出向量,對于任意一個輸人字母,網絡輸出在字母對應的順序位置上的值為1,其余為O,即網絡輸出矩陣為對角線上為1的26×26的單位陣,定義target=eye(26)。本文共有兩類這樣的數據作為輸人:一類是理想的標準輸人信號;另一類是在標準輸人信號中加上用MATLAB工具箱里的噪聲信號,即randn函數。3識別字符的網絡設計及其實驗分析3.1單層感知器的設計及其識別效果選取網絡35個輸人節點和26個輸出節點,設置目標誤差為0.0001,最大訓練次數為40。設計出的網絡使輸出矢量在正確的位置上輸出為1,在其他位置上輸出為O。代寫醫學論文首先用理想輸人信號訓練網絡,得到無噪聲訓練結果,然后用兩組標準輸入矢量加上兩組帶有隨機噪聲的輸人矢量訓練網絡,這樣可以保證網絡同時具有對理想輸人和噪聲輸人分類的能力。網絡訓練完后,為保證網絡能準確無誤地識別出理想的字符,再用無噪聲的標準輸入訓練網絡,最終得到有能力識別帶有噪聲輸人的網絡。下一步是對所設計的網絡進行性能測試:給網絡輸人任意字母,并在其上加人具有平均值從。~0.2的噪聲,隨機產生100個輸人矢量,分別對上述兩種網絡的字母識別出錯率進行實驗,結果如圖2所示。其中縱坐標所表示的識別出錯率是將實際輸出減去期望輸出所得的輸出矩陣中所有元素的絕對值和的一半再除以26得到的;虛線代表用無噪聲的標準輸人信號訓練出網絡的出錯率,實線代表用有噪聲訓練出網絡的出錯率。從圖中可以看出,無噪聲訓練網絡對字符進行識別時,當字符一出現噪聲時,該網絡識別立刻出現錯誤;當噪聲均值超過0.02時,識別出錯率急劇上升,其最大出錯率達到21.5%。由此可見,無噪聲訓練網絡識別幾乎沒有抗干擾能力。而有噪聲訓練出的網絡具有一定的抗干擾能力,它在均值為。~0.06之間的噪聲環境下,能夠準確無誤地識別;其最大識別出錯率約為6.6%,遠遠小于無噪聲訓練出的網絡。3.2BP網絡的設計及其識別效果該網絡設計方法在文獻[lj中有詳細介紹。網絡具有35個輸人節點和26個輸出節點。目標誤差為0.0001,采用輸人在(0,l)范圍內對數S型激活函數兩層109519/109519網絡,隱含層根據經驗選取10個神經元。和單層感知器一樣,分別用理想輸人信號和帶有隨機噪聲的輸人訓練網絡,得到有噪聲訓練網絡和無噪聲訓練網絡。由于噪聲輸人矢量可能會導致網絡的1或o輸出不正確,或出現其他值,所以為了使網絡具有抗干擾能力,在網絡訓練后,再將其輸出經過一層競爭網絡的處理,使網絡的輸出只在本列中的最大值的位t為1,保證在其他位置輸出為O,其中網絡的訓練采用自適應學習速率加附加動量法,在MATLAB工具箱中直接調用traingdx。在與單層感知器相同的測試條件下對網絡進行性能測試,結果如圖3所示。其中虛線代表用無噪聲訓練網絡的出錯率,實線代表用有噪聲訓練網絡的出錯率。從圖中可以看出,在均值為o一0.12之間的噪聲環境下,兩個網絡都能夠準確地進行識別。在0.12~0.15之間的噪聲環境下,由于噪聲幅度相對較小,待識別字符接近于理想字符,故無噪聲訓練網絡的出錯率較有噪聲訓練網絡略低。當所加的噪聲均值超過。.15時,待識別字符在噪聲作用下不再接近于理想字符,無噪聲訓練網絡的出錯率急劇上升,此時有噪聲訓練網絡的性能較優.參考文獻[1]叢爽.面向MATLAB工具箱的神經網絡理論與應用「M」.合肥:中國科學技術大學出版社,2003.[2]武強,童學鋒,季雋.基于人工神經網絡的數字字符識別[J].計算機工程,2003,29(14):112一113.[3]廖翔云,許錦標,龔仕偉.車牌識別技術研究[J].徽機發展,2003,13:30一35.[4]李中凱,王效岳,魏修亭.BP網絡在汽車牌照字符識別中的應用[J].

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論