




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數是定義域為的偶函數,且滿足,當時,,則函數在區間上零點的個數為()A.9 B.10 C.18 D.202.的展開式中的一次項系數為()A. B. C. D.3.在空間直角坐標系中,四面體各頂點坐標分別為:.假設螞蟻窩在點,一只螞蟻從點出發,需要在,上分別任意選擇一點留下信息,然后再返回點.那么完成這個工作所需要走的最短路徑長度是()A. B. C. D.4.復數滿足,則復數等于()A. B. C.2 D.-25.已知,復數,,且為實數,則()A. B. C.3 D.-36.△ABC的內角A,B,C的對邊分別為,已知,則為()A. B. C.或 D.或7.半正多面體(semiregularsolid)亦稱“阿基米德多面體”,是由邊數不全相同的正多邊形為面的多面體,體現了數學的對稱美.二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個正三角形和六個正方形為面的半正多面體.如圖所示,圖中網格是邊長為1的正方形,粗線部分是某二十四等邊體的三視圖,則該幾何體的體積為()A. B. C. D.8.已知函數,給出下列四個結論:①函數的值域是;②函數為奇函數;③函數在區間單調遞減;④若對任意,都有成立,則的最小值為;其中正確結論的個數是()A. B. C. D.9.已知函數,對任意的,,當時,,則下列判斷正確的是()A. B.函數在上遞增C.函數的一條對稱軸是 D.函數的一個對稱中心是10.直線x-3y+3=0經過橢圓x2a2+y2bA.3-1 B.3-12 C.11.若函數的圖象經過點,則函數圖象的一條對稱軸的方程可以為()A. B. C. D.12.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.設,滿足約束條件,若的最大值是10,則________.14.如圖,在矩形中,,是的中點,將,分別沿折起,使得平面平面,平面平面,則所得幾何體的外接球的體積為__________.15.若向量滿足,則實數的取值范圍是____________.16.已知數列為正項等比數列,,則的最小值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在國家“大眾創業,萬眾創新”戰略下,某企業決定加大對某種產品的研發投入.為了對新研發的產品進行合理定價,將該產品按事先擬定的價格試銷,得到一組檢測數據如表所示:試銷價格(元)產品銷量(件)已知變量且有線性負相關關系,現有甲、乙、丙三位同學通過計算求得回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學的計算結果是正確的.(1)試判斷誰的計算結果正確?(2)若由線性回歸方程得到的估計數據與檢測數據的誤差不超過,則稱該檢測數據是“理想數據”,現從檢測數據中隨機抽取個,求“理想數據”的個數為的概率.18.(12分)某市環保部門對該市市民進行了一次垃圾分類知識的網絡問卷調查,每一位市民僅有一次參加機會,通過隨機抽樣,得到參加問卷調查的人的得分(滿分:分)數據,統計結果如下表所示.組別頻數(1)已知此次問卷調查的得分服從正態分布,近似為這人得分的平均值(同一組中的數據用該組區間的中點值為代表),請利用正態分布的知識求;(2)在(1)的條件下,環保部門為此次參加問卷調查的市民制定如下獎勵方案.(ⅰ)得分不低于的可以獲贈次隨機話費,得分低于的可以獲贈次隨機話費;(ⅱ)每次贈送的隨機話費和相應的概率如下表.贈送的隨機話費/元概率現市民甲要參加此次問卷調查,記為該市民參加問卷調查獲贈的話費,求的分布列及數學期望.附:,若,則,,.19.(12分)已知的內角、、的對邊分別為、、,滿足.有三個條件:①;②;③.其中三個條件中僅有兩個正確,請選出正確的條件完成下面兩個問題:(1)求;(2)設為邊上一點,且,求的面積.20.(12分)已知數列的前項和為,且滿足.(1)求數列的通項公式;(2)若,,且數列前項和為,求的取值范圍.21.(12分)已知函數存在一個極大值點和一個極小值點.(1)求實數a的取值范圍;(2)若函數的極大值點和極小值點分別為和,且,求實數a的取值范圍.(e是自然對數的底數)22.(10分)在直角坐標系中,直線l過點,且傾斜角為,以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為.求直線l的參數方程和曲線C的直角坐標方程,并判斷曲線C是什么曲線;設直線l與曲線C相交與M,N兩點,當,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由已知可得函數f(x)的周期與對稱軸,函數F(x)=f(x)在區間上零點的個數等價于函數f(x)與g(x)圖象在上交點的個數,作出函數f(x)與g(x)的圖象如圖,數形結合即可得到答案.【詳解】函數F(x)=f(x)在區間上零點的個數等價于函數f(x)與g(x)圖象在上交點的個數,由f(x)=f(2﹣x),得函數f(x)圖象關于x=1對稱,∵f(x)為偶函數,取x=x+2,可得f(x+2)=f(﹣x)=f(x),得函數周期為2.又∵當x∈[0,1]時,f(x)=x,且f(x)為偶函數,∴當x∈[﹣1,0]時,f(x)=﹣x,g(x),作出函數f(x)與g(x)的圖象如圖:由圖可知,兩函數圖象共10個交點,即函數F(x)=f(x)在區間上零點的個數為10.故選:B.【點睛】本題考查函數的零點與方程根的關系,考查數學轉化思想方法與數形結合的解題思想方法,屬于中檔題.2、B【解析】
根據多項式乘法法則得出的一次項系數,然后由等差數列的前項和公式和組合數公式得出結論.【詳解】由題意展開式中的一次項系數為.故選:B.【點睛】本題考查二項式定理的應用,應用多項式乘法法則可得展開式中某項系數.同時本題考查了組合數公式.3、C【解析】
將四面體沿著劈開,展開后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開,展開后如下圖所示:最短路徑就是的邊.易求得,由,知,由余弦定理知其中,∴故選:C【點睛】本題考查了余弦定理解三角形,需熟記定理的內容,考查了學生的空間想象能力,屬于中檔題.4、B【解析】
通過復數的模以及復數的代數形式混合運算,化簡求解即可.【詳解】復數滿足,∴,故選B.【點睛】本題主要考查復數的基本運算,復數模長的概念,屬于基礎題.5、B【解析】
把和代入再由復數代數形式的乘法運算化簡,利用虛部為0求得m值.【詳解】因為為實數,所以,解得.【點睛】本題考查復數的概念,考查運算求解能力.6、D【解析】
由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎題.7、D【解析】
根據三視圖作出該二十四等邊體如下圖所示,求出該幾何體的棱長,可以將該幾何體看作是相應的正方體沿各棱的中點截去8個三棱錐所得到的,可求出其體積.【詳解】如下圖所示,將該二十四等邊體的直觀圖置于棱長為2的正方體中,由三視圖可知,該幾何體的棱長為,它是由棱長為2的正方體沿各棱中點截去8個三棱錐所得到的,該幾何體的體積為,故選:D.【點睛】本題考查三視圖,幾何體的體積,對于二十四等邊體比較好的處理方式是由正方體各棱的中點得到,屬于中檔題.8、C【解析】
化的解析式為可判斷①,求出的解析式可判斷②,由得,結合正弦函數得圖象即可判斷③,由得可判斷④.【詳解】由題意,,所以,故①正確;為偶函數,故②錯誤;當時,,單調遞減,故③正確;若對任意,都有成立,則為最小值點,為最大值點,則的最小值為,故④正確.故選:C.【點睛】本題考查三角函數的綜合運用,涉及到函數的值域、函數單調性、函數奇偶性及函數最值等內容,是一道較為綜合的問題.9、D【解析】
利用輔助角公式將正弦函數化簡,然后通過題目已知條件求出函數的周期,從而得到,即可求出解析式,然后利用函數的性質即可判斷.【詳解】,又,即,有且僅有滿足條件;又,則,,函數,對于A,,故A錯誤;對于B,由,解得,故B錯誤;對于C,當時,,故C錯誤;對于D,由,故D正確.故選:D【點睛】本題考查了簡單三角恒等變換以及三角函數的性質,熟記性質是解題的關鍵,屬于基礎題.10、A【解析】
由直線x-3y+3=0過橢圓的左焦點F,得到左焦點為再由FC=2CA,求得A3【詳解】由題意,直線x-3y+3=0經過橢圓的左焦點F,令所以c=3,即橢圓的左焦點為F(-3,0)直線交y軸于C(0,1),所以,OF=因為FC=2CA,所以FA=3又由點A在橢圓上,得3a由①②,可得4a2-24所以e2所以橢圓的離心率為e=3故選A.【點睛】本題考查了橢圓的幾何性質——離心率的求解,其中求橢圓的離心率(或范圍),常見有兩種方法:①求出a,c,代入公式e=ca;②只需要根據一個條件得到關于a,b,c的齊次式,轉化為a,c的齊次式,然后轉化為關于e的方程,即可得11、B【解析】
由點求得的值,化簡解析式,根據三角函數對稱軸的求法,求得的對稱軸,由此確定正確選項.【詳解】由題可知.所以令,得令,得故選:B【點睛】本小題主要考查根據三角函數圖象上點的坐標求參數,考查三角恒等變換,考查三角函數對稱軸的求法,屬于中檔題.12、B【解析】
或,從而明確充分性與必要性.【詳解】,由可得:或,即能推出,但推不出∴“”是“”的必要不充分條件故選【點睛】本題考查充分性與必要性,簡單三角方程的解法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
畫出不等式組表示的平面區域,數形結合即可容易求得結果.【詳解】畫出不等式組表示的平面區域如下所示:目標函數可轉化為與直線平行,數形結合可知當且僅當目標函數過點,取得最大值,故可得,解得.故答案為:.【點睛】本題考查由目標函數的最值求參數值,屬基礎題.14、【解析】
根據題意,畫出空間幾何體,設的中點分別為,并連接,利用面面垂直的性質及所給線段關系,可知幾何體的外接球的球心為,即可求得其外接球的體積.【詳解】由題可得,,均為等腰直角三角形,如圖所示,設的中點分別為,連接,則,.因為平面平面,平面平面,所以平面,平面,易得,則幾何體的外接球的球心為,半徑,所以幾何體的外接球的體積為.故答案為:.【點睛】本題考查了空間幾何體的綜合應用,折疊后空間幾何體的線面位置關系應用,空間幾何體外接球的性質及體積求法,屬于中檔題.15、【解析】
根據題意計算,解得答案.【詳解】,故,解得.故答案為:.【點睛】本題考查了向量的數量積,意在考查學生的計算能力.16、27【解析】
利用等比數列的性質求得,結合其下標和性質和均值不等式即可容易求得.【詳解】由等比數列的性質可知,則,.當且僅當時取得最小值.故答案為:.【點睛】本題考查等比數列的下標和性質,涉及均值不等式求和的最小值,屬綜合基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)乙同學正確;(2).【解析】
(1)根據變量且有線性負相關關系判斷甲不正確.根據回歸直線方程過樣本中心點,判斷出乙正確.(2)由線性回歸方程得到的估計數據,計算出誤差,求得“理想數據”的個數,由此利用古典概型概率計算公式,求得所求概率.【詳解】(1)已知變量具有線性負相關關系,故甲不正確,,代入兩個回歸方程,驗證乙同學正確,故回歸方程為:(2)由(1)得到的回歸方程,計算估計數據如下表:021212由上表可知,“理想數據”的個數為.用列舉法可知,從個不同數據里抽出個不同數據的方法有種.從符合條件的個不同數據中抽出個,還要在不符合條件的個不同數據中抽出個的方法有種.故所求概率為【點睛】本小題主要考查回歸直線方程的判斷,考查古典概型概率計算,考查數據處理能力,屬于中檔題.18、(1);(2)見解析.【解析】
(1)根據題中所給的統計表,利用公式計算出平均數的值,再利用數據之間的關系將、表示為,,利用題中所給數據,以及正態分布的概率密度曲線的對稱性,求出對應的概率;(2)根據題意,高于平均數和低于平均數的概率各為,再結合得元、元的概率,分析得出話費的可能數據都有哪些,再利用公式求得對應的概率,進而得出分布列,之后利用離散型隨機變量的分布列求出其數學期望.【詳解】(1)由題意可得,易知,,,;(2)根據題意,可得出隨機變量的可能取值有、、、元,,,,.所以,隨機變量的分布列如下表所示:所以,隨機變量的數學期望為.【點睛】本題考查概率的計算,涉及到平均數的求法、正態分布概率的計算以及離散型隨機變量分布列及其數學期望,在解題時要弄清楚隨機變量所滿足的分布列類型,結合相應公式計算對應事件的概率,考查計算能力,屬于中等題.19、(1);(2).【解析】
(1)先求出角,進而可得出,則①②中有且只有一個正確,③正確,然后分①③正確和②③正確兩種情況討論,結合三角形的面積公式和余弦定理可求得的值;(2)計算出和,計算出,可得出,進而可求得的面積.【詳解】(1)因為,所以,得,,,為鈍角,與矛盾,故①②中僅有一個正確,③正確.顯然,得.當①③正確時,由,得(無解);當②③正確時,由于,,得;(2)如圖,因為,,則,則,.【點睛】本題考查解三角形綜合應用,涉及三角形面積公式和余弦定理的應用,考
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 雙鴨山校園亮化施工方案
- 2025簡化建設合同范本
- 2025至2030年中國高亮度發光管數據監測研究報告
- 2025至2030年中國鋼筋剝肋滾軋直螺紋套絲機數據監測研究報告
- 2025至2030年中國貂油滋潤噴發油數據監測研究報告
- 2025至2030年中國竹花架數據監測研究報告
- 2025至2030年中國真空磁化保溫杯數據監測研究報告
- 2025至2030年中國牛二層電焊手套數據監測研究報告
- 2025至2030年中國洗帶油數據監測研究報告
- 2025至2030年中國歐式模壓門數據監測研究報告
- 神經內科護理案例分析
- 2025年安徽省中考模擬英語試題(原卷版+解析版)
- 【初中語文】第11課《山地回憶》課件-2024-2025學年統編版語文七年級下冊
- 入團考試模擬100題及答案
- 2025陜西西安市長安城鄉建設開發限公司招聘17人高頻重點模擬試卷提升(共500題附帶答案詳解)
- 2025屆河南資本集團投資公司校園招聘啟動筆試參考題庫附帶答案詳解
- 2025-2030年中國阿爾茨海默癥藥物市場運行狀況及發展潛力分析報告
- 2025年河南職業技術學院單招職業技能測試題庫必考題
- OBE理念背景下開展細胞生物學課堂教學互動的探索實踐
- 2025年中國氫氧化鈣行業發展現狀及市場前景分析預測報告
- 二年級語文下冊 語文園地四 同步練習(含答案)
評論
0/150
提交評論