




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.甲、乙兩人約好步行沿同一路線同一方向在某景點集合,已知甲乙二人相距660米,二人同時出發,走了24分鐘時,由于乙距離景點近,先到達等候甲,甲共走了30分鐘也到達了景點與乙相遇.在整個行走過程中,甲、乙兩人均保持各自的速度勻速行走,甲、乙兩人相距的路程(米)與甲出發的時間(分鐘)之間的關系如圖所示,下列說法錯誤的是()A.甲的速度是70米/分 B.乙的速度是60米/分C.甲距離景點2100米 D.乙距離景點420米2.如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,其頂點坐標為A(﹣1,﹣3),與x軸的一個交點為B(﹣3,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結論:①abc>0;②不等式ax2+(b﹣m)x+c﹣n<0的解集為﹣3<x<﹣1;③拋物線與x軸的另一個交點是(3,0);④方程ax2+bx+c+3=0有兩個相等的實數根;其中正確的是()A.①③ B.②③ C.③④ D.②④3.為喜迎黨的十九大召開,樂陵某中學剪紙社團進行了剪紙大賽,下列作品既是軸對稱圖形又是中心對稱圖形的是()A. B.C. D.4.如果三角形滿足一個角是另一個角的3倍,那么我們稱這個三角形為“智慧三角形”.下列各組數據中,能作為一個智慧三角形三邊長的一組是()A.1,2,3 B.1,1, C.1,1, D.1,2,5.若關于x的方程=3的解為正數,則m的取值范圍是()A.m< B.m<且m≠C.m>﹣ D.m>﹣且m≠﹣6.下列各曲線中表示y是x的函數的是()A. B. C. D.7.如圖是由5個相同的小正方體組成的立體圖形,這個立體圖形的俯視圖是()A. B. C. D.8.下列運算正確的是()A. B. C. D.9.已知⊙O1與⊙O2的半徑分別是3cm和5cm,兩圓的圓心距為4cm,則兩圓的位置關系是()A.相交B.內切C.外離D.內含10.在函數y=中,自變量x的取值范圍是()A.x≥1 B.x≤1且x≠0 C.x≥0且x≠1 D.x≠0且x≠111.如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.2112.下列運算正確的是()A.a2?a3=a6B.a3+a2=a5C.(a2)4=a8D.a3﹣a2=a二、填空題:(本大題共6個小題,每小題4分,共24分.)13.因式分解:mn(n﹣m)﹣n(m﹣n)=_____.14.亞洲陸地面積約為4400萬平方千米,將44000000用科學記數法表示為_____.15.已知圓錐的底面半徑為3cm,側面積為15πcm2,則這個圓錐的側面展開圖的圓心角°.16.已知函數是關于的二次函數,則__________.17.已知線段AB=2cm,點C在線段AB上,且AC2=BC·AB,則AC的長___________cm.18.如圖,在矩形ABCD中,AB=4,AD=3,矩形內部有一動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點的距離之和PA+PB的最小值為______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知拋物線y=ax2+bx+c.(Ⅰ)若拋物線的頂點為A(﹣2,﹣4),拋物線經過點B(﹣4,0)①求該拋物線的解析式;②連接AB,把AB所在直線沿y軸向上平移,使它經過原點O,得到直線l,點P是直線l上一動點.設以點A,B,O,P為頂點的四邊形的面積為S,點P的橫坐標為x,當4+6≤S≤6+8時,求x的取值范圍;(Ⅱ)若a>0,c>1,當x=c時,y=0,當0<x<c時,y>0,試比較ac與l的大小,并說明理由.20.(6分)我市某中學舉辦“網絡安全知識答題競賽”,初、高中部根據初賽成績各選出5名選手組成初中代表隊和高中代表隊參加學校決賽,兩個隊各選出的5名選手的決賽成績如圖所示.平均分(分)中位數(分)眾數(分)方差(分2)初中部a85bs初中2高中部85c100160(1)根據圖示計算出a、b、c的值;結合兩隊成績的平均數和中位數進行分析,哪個隊的決賽成績較好?計算初中代表隊決賽成績的方差s初中2,并判斷哪一個代表隊選手成績較為穩定.21.(6分)某市出租車計費方法如圖所示,x(km)表示行駛里程,y(元)表示車費,請根據圖象回答下列問題:出租車的起步價是多少元?當x>3時,求y關于x的函數關系式;若某乘客有一次乘出租車的車費為32元,求這位乘客乘車的里程.22.(8分)先化簡,再求值:x223.(8分)計算:|-2|+2﹣1﹣cos61°﹣(1﹣)1.24.(10分)為了加強學生的安全意識,某校組織了學生參加安全知識競賽,從中抽取了部分的學生成績進行統計,繪制統計圖如圖(不完整).類別分數段A50.5~60.5B60.5~70.5C70.5~80.5D80.5~90.5E90.5~100.5請你根據上面的信息,解答下列問題.(1)若A組的頻數比B組小24,求頻數直方圖中的a,b的值;(2)在扇形統計圖中,D部分所對的圓心角為n°,求n的值并補全頻數直方圖;(3)若成績在80分以上為優秀,全校共有2000名學生,估計成績優秀的學生有多少名?25.(10分)“十九大”報告提出了我國將加大治理環境污染的力度,還我青山綠水,其中霧霾天氣讓環保和健康問題成為焦點,為了調查學生對霧霾天氣知識的了解程度,某校在全校學生中抽取400名同學做了一次調查,根據調查統計結果,繪制了不完整的一種統計圖表.對霧霾了解程度的統計表對霧霾的了解程度百分比A.非常了解5%B.比較了解mC.基本了解45%D.不了解n請結合統計圖表,回答下列問題:統計表中:m=,n=;請在圖1中補全條形統計圖;請問在圖2所示的扇形統計圖中,D部分扇形所對應的圓心角是多少度?26.(12分)如圖,熱氣球探測器顯示,從熱氣球A處看一棟樓頂部B處的仰角為30°,看這棟樓底部C處的俯角為60°,熱氣球與樓的水平距離AD為100米,試求這棟樓的高度BC.27.(12分)桌面上放有4張卡片,正面分別標有數字1,2,3,4,這些卡片除數字外完全相同.把這些卡片反面朝上洗勻后放在桌面上,甲從中任意抽出一張,記下卡片上的數字后仍放反面朝上放回洗勻,乙從中任意抽出一張,記下卡片上的數字,然后將這兩數相加.(1)請用列表或畫樹狀圖的方法求兩數和為5的概率;(2)若甲與乙按上述方式做游戲,當兩數之和為5時,甲勝;反之則乙勝;若甲勝一次得12分,那么乙勝一次得多少分,才能使這個游戲對雙方公平?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
根據圖中信息以及路程、速度、時間之間的關系一一判斷即可.【詳解】甲的速度==70米/分,故A正確,不符合題意;設乙的速度為x米/分.則有,660+24x-70×24=420,解得x=60,故B正確,本選項不符合題意,70×30=2100,故選項C正確,不符合題意,24×60=1440米,乙距離景點1440米,故D錯誤,故選D.【點睛】本題考查一次函數的應用,行程問題等知識,解題的關鍵是讀懂圖象信息,靈活運用所學知識解決問題.2、D【解析】
①錯誤.由題意a>1.b>1,c<1,abc<1;
②正確.因為y1=ax2+bx+c(a≠1)圖象與直線y2=mx+n(m≠1)交于A,B兩點,當ax2+bx+c<mx+n時,-3<x<-1;即不等式ax2+(b-m)x+c-n<1的解集為-3<x<-1;故②正確;
③錯誤.拋物線與x軸的另一個交點是(1,1);
④正確.拋物線y1=ax2+bx+c(a≠1)圖象與直線y=-3只有一個交點,方程ax2+bx+c+3=1有兩個相等的實數根,故④正確.【詳解】解:∵拋物線開口向上,∴a>1,
∵拋物線交y軸于負半軸,∴c<1,
∵對稱軸在y軸左邊,∴-<1,
∴b>1,
∴abc<1,故①錯誤.
∵y1=ax2+bx+c(a≠1)圖象與直線y2=mx+n(m≠1)交于A,B兩點,
當ax2+bx+c<mx+n時,-3<x<-1;
即不等式ax2+(b-m)x+c-n<1的解集為-3<x<-1;故②正確,
拋物線與x軸的另一個交點是(1,1),故③錯誤,
∵拋物線y1=ax2+bx+c(a≠1)圖象與直線y=-3只有一個交點,
∴方程ax2+bx+c+3=1有兩個相等的實數根,故④正確.
故選:D.【點睛】本題考查二次函數的性質、二次函數與不等式,二次函數與一元二次方程等知識,解題的關鍵是靈活運用所學知識解決問題,學會利用數形結合的思想解決問題.3、C【解析】
根據軸對稱和中心對稱的定義去判斷即可得出正確答案.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;C、是軸對稱圖形,也是中心對稱圖形,故此選項正確;D、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤.故選:C.【點睛】本題考查的是軸對稱和中心對稱的知識點,解題關鍵在于對知識點的理解和把握.4、D【解析】
根據三角形三邊關系可知,不能構成三角形,依此即可作出判定;
B、根據勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;
C、解直角三角形可知是頂角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三個角分別是90°,60°,30°的直角三角形,依此即可作出判定.【詳解】∵1+2=3,不能構成三角形,故選項錯誤;
B、∵12+12=()2,是等腰直角三角形,故選項錯誤;
C、底邊上的高是=,可知是頂角120°,底角30°的等腰三角形,故選項錯誤;
D、解直角三角形可知是三個角分別是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定義,故選項正確.
故選D.5、B【解析】
解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=,已知關于x的方程=3的解為正數,所以﹣2m+9>0,解得m<,當x=3時,x==3,解得:m=,所以m的取值范圍是:m<且m≠.故答案選B.6、D【解析】根據函數的意義可知:對于自變量x的任何值,y都有唯一的值與之相對應,故D正確.故選D.7、C【解析】
從上面看共有2行,上面一行有3個正方形,第二行中間有一個正方形,故選C.8、D【解析】
根據冪的乘方:底數不變,指數相乘.合并同類項即可解答.【詳解】解:A、B兩項不是同類項,所以不能合并,故A、B錯誤,C、D考查冪的乘方運算,底數不變,指數相乘.,故D正確;【點睛】本題考查冪的乘方和合并同類項,熟練掌握運算法則是解題的關鍵.9、A【解析】試題分析:∵⊙O1和⊙O2的半徑分別為5cm和3cm,圓心距O1O2=4cm,5﹣3<4<5+3,∴根據圓心距與半徑之間的數量關系可知⊙O1與⊙O2相交.故選A.考點:圓與圓的位置關系.10、C【解析】
根據分式和二次根式有意義的條件進行計算即可.【詳解】由題意得:x≥2且x﹣2≠2.解得:x≥2且x≠2.故x的取值范圍是x≥2且x≠2.故選C.【點睛】本題考查了函數自變量的取值范圍問題,掌握分式和二次根式有意義的條件是解題的關鍵.11、A【解析】
根據已知作出三角形的高線AD,進而得出AD,BD,CD,的長,即可得出三角形的面積.【詳解】解:過點A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,
∴cosB==,
∴∠B=45°,
∵sinC===,
∴AD=3,
∴CD==4,
∴BD=3,
則△ABC的面積是:×AD×BC=×3×(3+4)=.
故選:A.【點睛】此題主要考查了解直角三角形的知識,作出AD⊥BC,進而得出相關線段的長度是解決問題的關鍵.12、C【解析】
根據同底數冪的乘法法則:同底數冪相乘,底數不變,指數相加;合并同類項的法則:把同類項的系數相加,所得結果作為系數,字母和字母的指數不變;冪的乘方法則:底數不變,指數相乘進行計算即可.【詳解】A、a2?a3=a5,故原題計算錯誤;B、a3和a2不是同類項,不能合并,故原題計算錯誤;C、(a2)4=a8,故原題計算正確;D、a3和a2不是同類項,不能合并,故原題計算錯誤;故選:C.【點睛】此題主要考查了冪的乘方、同底數冪的乘法,以及合并同類項,關鍵是掌握計算法則.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】mn(n-m)-n(m-n)=mn(n-m)+n(n-m)=n(n-m)(m+1),故答案為n(n-m)(m+1).14、4.4×1【解析】分析:科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.詳解:44000000=4.4×1,故答案為4.4×1.點睛:此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.15、1【解析】試題分析:根據圓錐的側面積公式S=πrl得出圓錐的母線長,再結合扇形面積即可求出圓心角的度數.解:∵側面積為15πcm2,∴圓錐側面積公式為:S=πrl=π×3×l=15π,解得:l=5,∴扇形面積為15π=,解得:n=1,∴側面展開圖的圓心角是1度.故答案為1.考點:圓錐的計算.16、1【解析】
根據一元二次方程的定義可得:,且,求解即可得出m的值.【詳解】解:由題意得:,且,解得:,且,∴故答案為:1.【點睛】此題主要考查了一元二次方程的定義,關鍵是掌握“未知數的最高次數是1”且“二次項的系數不等于0”.17、【解析】
設AC=x,則BC=2-x,根據AC2=BC·AB列方程求解即可.【詳解】解:設AC=x,則BC=2-x,根據AC2=BC·AB可得x2=2(2-x),解得:x=或(舍去).故答案為.【點睛】本題考查了黃金分割的應用,關鍵是明確黃金分割所涉及的線段的比.18、4【解析】分析:首先由S△PAB=S矩形ABCD,得出動點P在與AB平行且與AB的距離是2的直線l上,作A關于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.詳解:設△ABP中AB邊上的高是h.∵S△PAB=S矩形ABCD,∴AB?h=AB?AD,∴h=AD=2,∴動點P在與AB平行且與AB的距離是2的直線l上,如圖,作A關于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.在Rt△ABE中,∵AB=4,AE=2+2=4,∴BE=,即PA+PB的最小值為4.故答案為4.點睛:本題考查了軸對稱-最短路線問題,三角形的面積,矩形的性質,勾股定理,兩點之間線段最短的性質.得出動點P所在的位置是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(Ⅰ)①y=x2+3x②當3+6≤S≤6+2時,x的取值范圍為是≤x≤或≤x≤(Ⅱ)ac≤1【解析】
(I)①由拋物線的頂點為A(-2,-3),可設拋物線的解析式為y=a(x+2)2-3,代入點B的坐標即可求出a值,此問得解,②根據點A、B的坐標利用待定系數法可求出直線AB的解析式,進而可求出直線l的解析式,分點P在第二象限及點P在第四象限兩種情況考慮:當點P在第二象限時,x<0,通過分割圖形求面積法結合3+6≤S≤6+2,即可求出x的取值范圍,當點P在第四象限時,x>0,通過分割圖形求面積法結合3+6≤S≤6+2,即可求出x的取值范圍,綜上即可得出結論,(2)由當x=c時y=0,可得出b=-ac-1,由當0<x<c時y>0,可得出拋物線的對稱軸x=≥c,進而可得出b≤-2ac,結合b=-ac-1即可得出ac≤1.【詳解】(I)①設拋物線的解析式為y=a(x+2)2﹣3,∵拋物線經過點B(﹣3,0),∴0=a(﹣3+2)2﹣3,解得:a=1,∴該拋物線的解析式為y=(x+2)2﹣3=x2+3x.②設直線AB的解析式為y=kx+m(k≠0),將A(﹣2,﹣3)、B(﹣3,0)代入y=kx+m,得:,解得:,∴直線AB的解析式為y=﹣2x﹣2.∵直線l與AB平行,且過原點,∴直線l的解析式為y=﹣2x.當點P在第二象限時,x<0,如圖所示.S△POB=×3×(﹣2x)=﹣3x,S△AOB=×3×3=2,∴S=S△POB+S△AOB=﹣3x+2(x<0).∵3+6≤S≤6+2,∴,即,解得:≤x≤,∴x的取值范圍是≤x≤.當點P′在第四象限時,x>0,過點A作AE⊥x軸,垂足為點E,過點P′作P′F⊥x軸,垂足為點F,則S四邊形AEOP′=S梯形AEFP′﹣S△OFP′=?(x+2)﹣?x?(2x)=3x+3.∵S△ABE=×2×3=3,∴S=S四邊形AEOP′+S△ABE=3x+2(x>0).∵3+6≤S≤6+2,∴,即,解得:≤x≤,∴x的取值范圍為≤x≤.綜上所述:當3+6≤S≤6+2時,x的取值范圍為是≤x≤或≤x≤.(II)ac≤1,理由如下:∵當x=c時,y=0,∴ac2+bc+c=0,∵c>1,∴ac+b+1=0,b=﹣ac﹣1.由x=c時,y=0,可知拋物線與x軸的一個交點為(c,0).把x=0代入y=ax2+bx+c,得y=c,∴拋物線與y軸的交點為(0,c).∵a>0,∴拋物線開口向上.∵當0<x<c時,y>0,∴拋物線的對稱軸x=﹣≥c,∴b≤﹣2ac.∵b=﹣ac﹣1,∴﹣ac﹣1≤﹣2ac,∴ac≤1.【點睛】本題主要考查了待定系數法求二次(一次)函數解析式、三角形的面積、梯形的面積、解一元一次不等式組、二次函數圖象上點的坐標特征以及二次函數的性質,解題的關鍵是:(1)①巧設頂點式,代入點B的坐標求出a值,②分點P在第二象限及點P在第四象限兩種情況找出x的取值范圍,(2)根據二次函數圖象上點的坐標特征結合二次函數的性質,找出b=-ac-1及b≤-2ac.20、(1)85,85,80;(2)初中部決賽成績較好;(3)初中代表隊選手成績比較穩定.【解析】
分析:(1)根據成績表,結合平均數、眾數、中位數的計算方法進行解答;(2)比較初中部、高中部的平均數和中位數,結合比較結果得出結論;(3)利用方差的計算公式,求出初中部的方差,結合方差的意義判斷哪個代表隊選手的成績較為穩定.【詳解】詳解:(1)初中5名選手的平均分,眾數b=85,高中5名選手的成績是:70,75,80,100,100,故中位數c=80;(2)由表格可知初中部與高中部的平均分相同,初中部的中位數高,故初中部決賽成績較好;(3)=70,∵,∴初中代表隊選手成績比較穩定.【點睛】本題是一道有關條形統計圖、平均數、眾數、中位數、方差的統計類題目,掌握平均數、眾數、中位數、方差的概念及計算方法是解題的關鍵.21、(1)y=2x+2(2)這位乘客乘車的里程是15km【解析】
(1)根據函數圖象可以得出出租車的起步價是8元,設當x>3時,y與x的函數關系式為y=kx+b(k≠0),運用待定系數法就可以求出結論;
(2)將y=32代入(1)的解析式就可以求出x的值.【詳解】(1)由圖象得:出租車的起步價是8元;設當x>3時,y與x的函數關系式為y=kx+b(k≠0),由函數圖象,得,解得:故y與x的函數關系式為:y=2x+2;(2)∵32元>8元,∴當y=32時,32=2x+2,x=15答:這位乘客乘車的里程是15km.22、12【解析】
這道求代數式值的題目,不應考慮把x的值直接代入,通常做法是先化簡,然后再代入求值.【詳解】解:原式=?﹣=﹣=﹣=,當x=1時,原式==.【點睛】本題考查了分式的化簡求值,解題的關鍵是熟練的掌握分式的運算法則.23、1-【解析】
利用零指數冪和絕對值的性質、特殊角的三角函數值、負指數次冪的性質進行計算即可.【詳解】解:原式=.【點睛】本題考查了零指數冪和絕對值的性質、特殊角的三角函數值、負指數次冪的性質,熟練掌握性質及定義是解題的關鍵.24、(1)40(2)126°,1(3)940名【解析】
(1)根據若A組的頻數比B組小24,且已知兩個組的百分比,據此即可求得總人數,然后根據百分比的意義求得a、b的值;(2)利用360°乘以對應的比例即可求解;(3)利用總人數乘以對應的百分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 法學概論的法律語言表達與溝通技能試題及答案
- 風險管理在財務決策中的作用分析試題及答案
- 法學概論考試與實務結合的試題及答案
- 軟件設計師職業技能評估要點試題及答案
- 2025年編程語言新特性試題及答案
- 機器學習基礎概念試題及答案
- 2025年軟考設計師經驗回顧試題及答案
- 網絡管理心理素質試題及答案
- 網絡備份與恢復方案試題與答案
- 風險管理團隊建設試題及答案
- 手表質押借款協議書
- 《流感中醫治療》課件
- 2025河南省水利第一工程局集團有限公司招聘49人筆試參考題庫附帶答案詳解
- 2025四川西南發展控股集團有限公司招聘工作人員65人筆試參考題庫附帶答案詳解
- 湖北省武漢市2025屆高中畢業生四月調研考試數學試卷及答案(武漢四調)
- 故宮的資料簡介(標準版)
- 標準名稱中華人民共和國衛生部救護車專業標準
- 混凝土攪拌站風險辨識與預防措施
- 財稅實務金融企業貸款損失準備金稅前扣除的誤區
- 各品牌挖掘機挖斗斗軸、馬拉頭尺寸數據
- 服裝測量方法及圖示
評論
0/150
提交評論