2023屆黑龍江省牡丹江市海林朝鮮族中學高三第一次調研測試數學試卷含解析_第1頁
2023屆黑龍江省牡丹江市海林朝鮮族中學高三第一次調研測試數學試卷含解析_第2頁
2023屆黑龍江省牡丹江市海林朝鮮族中學高三第一次調研測試數學試卷含解析_第3頁
2023屆黑龍江省牡丹江市海林朝鮮族中學高三第一次調研測試數學試卷含解析_第4頁
2023屆黑龍江省牡丹江市海林朝鮮族中學高三第一次調研測試數學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數的大致圖象為()A. B.C. D.2.已知定義在上的奇函數滿足,且當時,,則()A.1 B.-1 C.2 D.-23.已知集合,則的值域為()A. B. C. D.4.已知f(x),g(x)都是偶函數,且在[0,+∞)上單調遞增,設函數F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a>0,則()A.F(-a)≥F(a)且F(1+a)≥F(1-a)B.F(-a)≥F(a)且F(1+a)≤F(1-a)C.F(-a)≤F(a)且F(1+a)≥F(1-a)D.F(-a)≤F(a)且F(1+a)≤F(1-a)5.設正項等差數列的前項和為,且滿足,則的最小值為A.8 B.16 C.24 D.366.已知,且,則()A. B. C. D.7.某人2018年的家庭總收人為元,各種用途占比如圖中的折線圖,年家庭總收入的各種用途占比統計如圖中的條形圖,已知年的就醫費用比年的就醫費用增加了元,則該人年的儲畜費用為()A.元 B.元 C.元 D.元8.設集合、是全集的兩個子集,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.設平面與平面相交于直線,直線在平面內,直線在平面內,且則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分不必要條件10.如圖所示的程序框圖輸出的是126,則①應為()A. B. C. D.11.已知復數滿足,則()A. B. C. D.12.在中,角、、的對邊分別為、、,若,,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,兩個同心圓的半徑分別為和,為大圓的一條直徑,過點作小圓的切線交大圓于另一點,切點為,點為劣弧上的任一點(不包括兩點),則的最大值是__________.14.在面積為的中,,若點是的中點,點滿足,則的最大值是______.15.一個袋中裝著標有數字1,2,3,4,5的小球各2個,從中任意摸取3個小球,每個小球被取出的可能性相等,則取出的3個小球中數字最大的為4的概率是__.16.在一次醫療救助活動中,需要從A醫院某科室的6名男醫生、4名女醫生中分別抽調3名男醫生、2名女醫生,且男醫生中唯一的主任醫師必須參加,則不同的選派案共有________種.(用數字作答)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知在三棱錐中,平面,分別為的中點,且.(1)求證:;(2)設平面與交于點,求證:為的中點.18.(12分)已知.(1)解關于x的不等式:;(2)若的最小值為M,且,求證:.19.(12分)已知的內角,,的對邊分別為,,,且.(1)求;(2)若的面積為,,求的周長.20.(12分)心形線是由一個圓上的一個定點,當該圓在繞著與其相切且半徑相同的另外一個圓周上滾動時,這個定點的軌跡,因其形狀像心形而得名,在極坐標系中,方程()表示的曲線就是一條心形線,如圖,以極軸所在的直線為軸,極點為坐標原點的直角坐標系中.已知曲線的參數方程為(為參數).(1)求曲線的極坐標方程;(2)若曲線與相交于、、三點,求線段的長.21.(12分)如圖,已知橢圓經過點,且離心率,過右焦點且不與坐標軸垂直的直線與橢圓相交于兩點.(1)求橢圓的標準方程;(2)設橢圓的右頂點為,線段的中點為,記直線的斜率分別為,求證:為定值.22.(10分)已知橢圓的左、右焦點分別為,離心率為,為橢圓上一動點(異于左右頂點),面積的最大值為.(1)求橢圓的方程;(2)若直線與橢圓相交于點兩點,問軸上是否存在點,使得是以為直角頂點的等腰直角三角形?若存在,求點的坐標;若不存在,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

利用特殊點的坐標代入,排除掉C,D;再由判斷A選項正確.【詳解】,排除掉C,D;,,,.故選:A.【點睛】本題考查了由函數解析式判斷函數的大致圖象問題,代入特殊點,采用排除法求解是解決這類問題的一種常用方法,屬于中檔題.2、B【解析】

根據f(x)是R上的奇函數,并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期為4,而由x∈[0,1]時,f(x)=2x-m及f(x)是奇函數,即可得出f(0)=1-m=0,從而求得m=1,這樣便可得出f(2019)=f(-1)=-f(1)=-1.【詳解】∵是定義在R上的奇函數,且;∴;∴;∴的周期為4;∵時,;∴由奇函數性質可得;∴;∴時,;∴.故選:B.【點睛】本題考查利用函數的奇偶性和周期性求值,此類問題一般根據條件先推導出周期,利用函數的周期變換來求解,考查理解能力和計算能力,屬于中等題.3、A【解析】

先求出集合,化簡=,令,得由二次函數的性質即可得值域.【詳解】由,得,,令,,,所以得,在上遞增,在上遞減,,所以,即的值域為故選A【點睛】本題考查了二次不等式的解法、二次函數最值的求法,換元法要注意新變量的范圍,屬于中檔題4、A【解析】試題分析:由題意得,F(x)=2g(1-x),f(x)≥g(1-x)∴F(-a)=2g(1+a),f(a)=f(-a)≥g(1+a)2f(-a),f(a)=f(-a)<g(1+a),∵a>0,∴(a+1)2-(a-1)∴若f(a)>g(1+a):F(-a)=2g(1+a),F(a)=2g(1-a),∴F(-a)>F(a),若g(1-a)≤f(a)≤g(1+a):F(-a)=2f(-a)=2f(a),F(a)=2g(1-a),∴F(-a)≥F(a),若f(a)<g(1-a):F(-a)=2f(-a)=2f(a),F(a)=2f(a),∴F(-a)=F(a),綜上可知F(-a)≥F(a),同理可知F(1+a)≥F(1-a),故選A.考點:1.函數的性質;2.分類討論的數學思想.【思路點睛】本題在在解題過程中抓住偶函數的性質,避免了由于單調性不同導致1-a與1+a大小不明確的討論,從而使解題過程得以優化,另外,不要忘記定義域,如果要研究奇函數或者偶函數的值域、最值、單調性等問題,通常先在原點一側的區間(對奇(偶)函數而言)或某一周期內(對周期函數而言)考慮,然后推廣到整個定義域上.5、B【解析】

方法一:由題意得,根據等差數列的性質,得成等差數列,設,則,,則,當且僅當時等號成立,從而的最小值為16,故選B.方法二:設正項等差數列的公差為d,由等差數列的前項和公式及,化簡可得,即,則,當且僅當,即時等號成立,從而的最小值為16,故選B.6、B【解析】分析:首先利用同角三角函數關系式,結合題中所給的角的范圍,求得的值,之后借助于倍角公式,將待求的式子轉化為關于的式子,代入從而求得結果.詳解:根據題中的條件,可得為銳角,根據,可求得,而,故選B.點睛:該題考查的是有關同角三角函數關系式以及倍角公式的應用,在解題的過程中,需要對已知真切求余弦的方法要明確,可以應用同角三角函數關系式求解,也可以結合三角函數的定義式求解.7、A【解析】

根據2018年的家庭總收人為元,且就醫費用占得到就醫費用,再根據年的就醫費用比年的就醫費用增加了元,得到年的就醫費用,然后由年的就醫費用占總收人,得到2019年的家庭總收人再根據儲畜費用占總收人求解.【詳解】因為2018年的家庭總收人為元,且就醫費用占所以就醫費用因為年的就醫費用比年的就醫費用增加了元,所以年的就醫費用元,而年的就醫費用占總收人所以2019年的家庭總收人為而儲畜費用占總收人所以儲畜費用:故選:A【點睛】本題主要考查統計中的折線圖和條形圖的應用,還考查了建模解模的能力,屬于基礎題.8、C【解析】

作出韋恩圖,數形結合,即可得出結論.【詳解】如圖所示,,同時.故選:C.【點睛】本題考查集合關系及充要條件,注意數形結合方法的應用,屬于基礎題.9、A【解析】

試題分析:α⊥β,b⊥m又直線a在平面α內,所以a⊥b,但直線不一定相交,所以“α⊥β”是“a⊥b”的充分不必要條件,故選A.考點:充分條件、必要條件.10、B【解析】試題分析:分析程序中各變量、各語句的作用,再根據流程圖所示的順序,可知:該程序的作用是累加S=2+22+…+2n的值,并輸出滿足循環的條件.解:分析程序中各變量、各語句的作用,再根據流程圖所示的順序,可知:該程序的作用是累加S=2+22+…+2n的值,并輸出滿足循環的條件.∵S=2+22+…+21=121,故①中應填n≤1.故選B點評:算法是新課程中的新增加的內容,也必然是新高考中的一個熱點,應高度重視.程序填空也是重要的考試題型,這種題考試的重點有:①分支的條件②循環的條件③變量的賦值④變量的輸出.其中前兩點考試的概率更大.此種題型的易忽略點是:不能準確理解流程圖的含義而導致錯誤.11、A【解析】

根據復數的運算法則,可得,然后利用復數模的概念,可得結果.【詳解】由題可知:由,所以所以故選:A【點睛】本題主要考查復數的運算,考驗計算,屬基礎題.12、B【解析】

利用兩角差的正弦公式和邊角互化思想可求得,可得出,然后利用余弦定理求出的值,最后利用正弦定理可求出的值.【詳解】,即,即,,,得,,.由余弦定理得,由正弦定理,因此,.故選:B.【點睛】本題考查三角形中角的正弦值的計算,考查兩角差的正弦公式、邊角互化思想、余弦定理與正弦定理的應用,考查運算求解能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

以為坐標原點,所在的直線為軸,的垂直平分線為軸,建立平面直角坐標系,從而可得、,,,然后利用向量數量積的坐標運算可得,再根據輔助角公式以及三角函數的性質即可求解.【詳解】以為坐標原點,所在的直線為軸,的垂直平分線為軸,建立平面直角坐標系,則、,由,且,所以,所以,即又平分,所以,則,設,則,,所以,所以,,所以的最大值是.故答案為:【點睛】本題考查了向量數量積的坐標運算、利用向量解決幾何問題,同時考查了輔助角公式以及三角函數的性質,屬于中檔題.14、【解析】

由任意三角形面積公式與構建關系表示|AB||AC|,再由已知與平面向量的線性運算、平面向量數量積的運算轉化,最后由重要不等式求得最值.【詳解】由△ABC的面積為得|AB||AC|sin∠BAC=,所以|AB||AC|sin∠BAC=,①又,即|AB||AC|cos∠BAC=,②由①與②的平方和得:|AB||AC|=,又點M是AB的中點,點N滿足,所以,當且僅當時,取等號,即的最大值是為.故答案為:【點睛】本題考查平面向量中由線性運算表示未知向量,進而由重要不等式求最值,屬于中檔題.15、【解析】

由題,得滿足題目要求的情況有,①有一個數字4,另外兩個數字從1,2,3里面選和②有兩個數字4,另外一個數字從1,2,3里面選,由此即可得到本題答案.【詳解】滿足題目要求的情況可以分成2大類:①有一個數字4,另外兩個數字從1,2,3里面選,一共有種情況;②有兩個數字4,另外一個數字從1,2,3里面選,一共有種情況,又從中任意摸取3個小球,有種情況,所以取出的3個小球中數字最大的為4的概率.故答案為:【點睛】本題主要考查古典概型與組合的綜合問題,考查學生分析問題和解決問題的能力.16、【解析】

首先選派男醫生中唯一的主任醫師,由題意利用排列組合公式即可確定不同的選派案方法種數.【詳解】首先選派男醫生中唯一的主任醫師,然后從名男醫生、名女醫生中分別抽調2名男醫生、名女醫生,故選派的方法為:.故答案為.【點睛】解排列組合問題要遵循兩個原則:一是按元素(或位置)的性質進行分類;二是按事情發生的過程進行分步.具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析.【解析】

(1)要做證明,只需證明平面即可;(2)易得∥平面,平面,利用線面平行的性質定理即可得到∥,從而獲得證明【詳解】證明:(1)因為平面,平面,所以.因為,所以.又因為,平面,平面,所以平面.又因為平面,所以.(2)因為平面與交于點,所以平面.因為分別為的中點,所以∥.又因為平面,平面,所以∥平面.又因為平面,平面平面,所以∥,又因為是的中點,所以為的中點.【點睛】本題考查線面垂直的判定定理以及線面平行的性質定理,考查學生的邏輯推理能力,是一道容易題.18、(1);(2)證明見解析.【解析】

(1)分類討論求解絕對值不等式即可;(2)由(1)中所得函數,求得最小值,再利用均值不等式即可證明.【詳解】(1)當時,等價于,該不等式恒成立,當時,等價于,該不等式解集為,當時,等價于,解得,綜上,或,所以不等式的解集為.(2),易得的最小值為1,即因為,,,所以,,,所以,當且僅當時等號成立.【點睛】本題考查利用分類討論求解絕對值不等式,涉及利用均值不等式證明不等式,屬綜合中檔題.19、(1);(2).【解析】

(1)利用正弦定理將目標式邊化角,結合倍角公式,即可整理化簡求得結果;(2)由面積公式,可以求得,再利用余弦定理,即可求得,結合即可求得周長.【詳解】(1)由題設得.由正弦定理得∵∴,所以或.當,(舍)故,解得.(2),從而.由余弦定理得.解得.∴.故三角形的周長為.【點睛】本題考查由余弦定理解三角形,涉及面積公式,正弦的倍角公式,應用正弦定理將邊化角,屬綜合性基礎題.20、(1)();(2).【解析】

(1)化簡得到直線方程為,再利用極坐標公式計算得到答案.(2)聯立方程計算得到,,計算得到答案.【詳解】(1)由消得,即,是過原點且傾斜角為的直線,∴的極坐標方程為().(2)由得,∴,由得∴,∴.【點睛】本題考查了參數方程,極坐標方程,意在考查

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論